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Abstract—This paper represents system models as algebraic
entities and formulates model transformation activities as alge-
braic operations. We call this modeling framework “Algebra of
Systems” (AoS). To show that AoS can automate complex model
reasoning tasks in system design projects, we implemented the
abstract algebraic specification as an executable metalanguage
named Object-Process Network, which serves as a tool for auto-
matic model transformation, enumeration, and evaluation. A case
study of the Apollo lunar landing mission design is developed using
this algebraic modeling approach.

Index Terms—Algebraic reasoning, metalanguage, metamodel-
ing, systems architecture, systems engineering.

I. INTRODUCTION

WHEN reasoning about a complex system, it is often
necessary to decompose the system into smaller units

of abstraction and then represent interactions among the units.
The objective of this paper is to present a mathematical frame-
work called Algebra of Systems (AoS) that provides a formal
structure to reason about systems of elements and interactions
in terms of algebraic operands and operators. To automate the
algebraic manipulation of system models, we also implement
an executable modeling language, called Object-Process Net-
work (OPN), that follows the formalisms defined in AoS.

A. Background

An algebra is a mathematical structure made up of two kinds
of things: an operand set and an operator set. The operators for
an algebra must also be closed under the operand set, meaning
that the application of operators to any element in the operand
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set always results in elements in the same set. An algebra A can
be written as a tuple

A = 〈{Operands}, {Operators}〉 .

where A is an algebra if and only if arbitrary compositions
of {Operators} on elements in {Operands} always result in
elements that are also in {Operands}. This is called the closure
property of an algebra.

Algebras are of interest to engineers because they provide a
representationally efficient language to reason about systems
with desirable level of information resolution. Operators in
an algebra provide the means to rewrite algebraic expressions
based on formal properties such as equality, associativity, or
commutativity. Creating operators that operate in the system
model domain allows us to transform, simplify, and reveal
hidden qualities of the system model and therefore improve our
understanding of the system of interest. Similarly, Operands in
an algebra provide the means to encode the information content
of algebraic expressions using abbreviated variable names or
mathematically defined constant values that decompose the
system into manageable subsets of qualitative and quantitative
properties.

Together, these subsets of qualitative and quantitative proper-
ties form a language that can illustrate both functions and forms
of systems. It also provides a consistent way to modularize
the complexity of a system model into discrete elements. For
example, segments of complex algebraic expressions can be
simplified using a new and unique variable name without
distorting the original meaning. For example, in an algebra
of real numbers, several operators can be simplified into one
operator, such as the operator multiplication (×), which is a
way to concatenate multiple operations of addition (+). In
other words, the operands and operators of an algebra provide
a robust instrument to describe systems in distinctive modules
that help manage the varying scopes and levels of detail of
system representation.

A less known feature of algebra is its procedural nature.
The definition of operators naturally provides the procedural
mechanism to interpret or transform algebraic expressions that
can be realized as computer programs. In many cases, the
mathematical definition of an algebra inherently provides a
significant portion of the specification content of executable
modeling languages.

B. Literature Review

The power of algebraic reasoning in engineering design has
been articulated by Hoare et al. [2]. In the world of information
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systems, the invention and application of relational algebra
have significantly influenced the way data-intensive systems are
designed and implemented [3], [4]. In the world of physical
devices, certain safety-critical digitally controlled real-time sys-
tems are made feasible with the support of algebraic modeling
techniques [5], [6]. To reason about the design of systems in
algebraic terms, Cousot and Cousot demonstrated a system
analysis technique called abstract interpretation [7] which uses
pairs of fixed-point operators such as “narrowing/widening”
defined on a domain of lattices.1 Similar to relational algebra,
whose operators are applied to the domain of relations, ab-
stract interpretation uses lattices as mathematical structures that
approximate engineering design models, and uses the afore-
mentioned operators to perform computations on the domain
of lattices. The resulting lattices can be translated back to a
representation of more refined engineering design models.

In [8], Suh illustrated that designs can be expressed in terms
of axiomatic requirement statements. He also proposed that
these statements and the associated design parameters could
be formulated into a matrix-based computational framework to
assess the likelihood of satisfying the requirements. The likeli-
hood metric is calculated as an entropy-like objective function
and is used as a design quality filter that helps designers
select design alternatives under this computational framework.
A limitation of this approach is that assessing the overall
likelihood of design success may not be easily formulated into
the prescribed matrix format. Moreover, computing the numeric
value of likelihood could be a major technical challenge.

Baldwin and Clark [9] suggested that certain socio-technical
properties of product development can be represented using a
small set of transformation operators on designed structures. In
contrast to the common perception that engineering resources
are often expensed on solving domain-specific (and often iso-
lated) specific design problems, Baldwin and Clark argued for
the strategic advantages of exploring the design spaces as a uni-
fied whole, which is composed of many subdesigns, tasks, and
contracts. They point out that in a dynamic marketplace, it is in-
evitable that the artifacts under design must also evolve with the
inevitable changes in their environment. Therefore, it is advan-
tageous for design teams to systematically introduce the con-
cept of “real options” [10] into a product’s architecture to allow
some flexibility. A challenge in this approach is that one must
provide scalable and flexible representational languages as well
as the “valuation technologies” [9] to assess the abstract design
space. Many modeling and valuation techniques have been
developed since then. For instance, the work in aspect-oriented
programming [11] and dynamic analysis [12] provides methods
that enable technologies to represent and evaluate the properties
of an abstract and evolving design space. In 1993, Carlson
[13] provided an algebraic formulation of design spaces and
presented a programming language, Grammatica, as a symbolic
representation of design spaces. Due to the limited computa-
tional power at that time, Grammatica has only been applied
to small-scaled geometrical configuration problems. However,
it demonstrated that an algebraic formulation of design spaces
can be supported in the form of a programming language.

1Lattice is a kind of algebra.

Another related design technique is called “Configuration
Design.” In [14], Wielinga and Schreiber stated that certain
design problems could be stated as an assembly of selected
components that satisfies a set of requirements and constraints
and that the ranking order of alternative designs could be
established using an optimality criterion. Many configuration
design problems can be treated as some kind of constraint-
based programming problem [15], solved using rule-based
languages [16]. However, one could imagine that when the
number of components becomes very large, the complexity of
model management can be a major bottleneck in practicing
Configuration Design.

The amount of information that must be managed in a mod-
ern product development environment is also making design
activities more challenging. Today, designers not only need
to formulate and assess design spaces based on one’s own
knowledge about the design issue but also they need to capture a
significant amount of scattered piece-meal knowledge of many
different designers in a design committee. It is also expected
that designers must consider many remotely relevant regulatory
rules. Distributed and context-aware computing systems can
also use certain algebraic approaches to automatically merge
and partition certain context-sensitive design constraints [17].

These prior arts led us to work on an algebraic language
to describe and evaluate the design space of a wide range of
engineering systems. Simple and precise syntax is necessary, so
that we may apply formal techniques to analyze the representa-
tional correctness and efficiency of the system models written
in this language. Moreover, the language should also possess
the computational qualities that we may interpret or compile
the system model to conduct simulation or performance metric
evaluation. Moreover, we show that this algebraic formulation
allows designers to symbolically track the design tasks that
involve human interventions as a set of model manipulation
instructions. When appropriate, the algebraic formulation also
enables certain model construction and reasoning tasks to be
computationally automated.

C. Motivation

Ideally, system designers need an expressive information
platform, which can support a broad range of design activities,
and also follow a concise set of design principles, so that
designers can have some intuitive sense of how to proceed with
the design exploration activities. We argue that these kinds of
conceptual guides could come from a small set of algebraic
rules, realized in an executable programming language. With
such a language, designers could manage the logical relation-
ships of their knowledge by using computers to help them rea-
son about the compositional structures of design alternatives.
To help people see and seek the values in the design landscape,
we need a unifying algebraic framework to guide the imple-
mentation of a general-purpose computable design language.

D. Synopsis

In this paper, we first present an overview of the development
of the AoS, followed by a description of the supporting tool
called OPN Integrated Development Environment (OPN-IDE).
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TABLE I
AoS ALGEBRAIC DOMAINS

To demonstrate the utility of this approach, we present a con-
crete example derived from the mission-mode selection studies
for the Apollo Moon mission. These sections are followed by a
discussion and conclusions.

II. SYSTEM ABSTRACTIONS

When we describe a system, one often needs to encode two
aspects of system properties: what the system is and what the
system does. Therefore, it is common to characterize modeling
languages into two generic classes of orientation: data ab-
straction and functional abstraction. Data abstraction modeling
languages describe what the system “is” by encoding systems
parametrically as a collection of values. Functional abstraction
modeling languages describe what the system “does” by encod-
ing a system’s transformative behavior.

However, for practical modeling of systems, it is often
necessary to incorporate both data and functional abstractions
in one language. The challenge lies in creating a language
with the best mix of abstraction features. To avoid bias, our
approach is to provide a metalanguage that supports a basic set
of abstraction features so that users can customize a modeling
language for their specific application needs. In other words, in
this approach, system models are encoded as formal language
specifications. By treating models as instances of customized
languages, one may systematically apply language manipu-
lation techniques, such as interpretation and compilation, to
analyze the models.

The AoS is a many-sorted algebra [18]. It is an algebraic
domain made up of subalgebraic domains. Table I gives the
domain names and their respective operands and operators.
Section II-A illustrates how AoS uses its primitive data abstrac-
tions to symbolically parameterize the structural and behavioral
properties of a system of interest. The data and functional
abstractions are captured in domains, P , B, and C. Next,
Section II-B defines the AoS domain and shows how it uses a
set of algebraic model transformation operators to approximate
the model manipulation processes for system design activities.

A. Algebraic Domains for Data and Functional Abstraction

Design knowledge about the design space might be stored
in many formats. One role of formal languages is to provide
appropriate data structures to encode different kinds of knowl-
edge. AoS uses a composite data structure, a triple 〈P,B,C〉,
as its operand domain. In this triple, P denotes the quantitative
and qualitative properties, B denotes the Boolean value status,
and C denotes the compositional structure of a system. These
data types are also operands for their respective subalgebras.
They are explained hereinafter.

Domain Definition 1 (P : Properties Domain): When encod-
ing a set of properties for a certain system in a formal data
structure, we organize them as a list of uniquely labeled values.
It is also useful to think of P as a domain of 2-tuples. It is a set
of tuples with two elements, where the data content of the keys
is nonrepetitive. In other words, P = {〈key, value〉∗}. The
properties domain P is similar to an equation-like language.
When expressed in a textual format, it can be written as a collec-
tion of key-value pairs in the format {key1 = value1; key2 =
value2; . . .}.

When we treat P as a textual language, its formal syntax can
be specified in the Extended Backus Naur Form.

By design, all the operators in P are closed under P . This
implies that the “language” P can be considered an algebra.
Four closure operators of interest defined in this paper are as
follows: merge, substitute, delete, and interp. One might
notice that this syntactical specification allows one to define
n-ary functions or multiargument functions. The definitions of
these “functions” should be supplied by different users.2 To
illustrate these operators, a set of examples is given hereinafter.

Given a data point p ∈ P : p = {x = x + 1; y = 2x; }

merge (p, {z = 1}) = {x = x + 1; y = 2x; z = 1}
substitute (p, {x = 1}) = {x = 2; y = 2}

delete (p, {y = 2x}) = {x = 1}
interp(p) = {x = x + 1; y = 2x + 2}.

The first three operators take two arguments and generate a
new operand as a result. The merge operator is like a union
operator of two sets of key-value pairs. Unlike the union
operator for set theory, merge is not commutative, since the
second argument always overwrites the data content in the
first argument. The definitions of these operators are shown as
follows.

Operator Definition 1 (merge(·, ·)): merge is a binary op-
erator that uses the information content in the second operand

2Our current implementation allows users to define these n-ary functions
using popular scripting languages such as Python or Jython (for more details,
see [19]).
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to overwrite the information content in the first operand. For
example

merge ({x = 3}, {y = 3}) = {x = 1, y = 3}
merge ({y = 1}, {y = 3}) = {y = 3}.

Operator Definition 2 (substitute(·, ·)): The substitute
operator is used to replace variables with some specific values
or expressions. For instance

substitute ({x = x + 1; z = x}, {x = y})
= {x = y + 1; z = y}.

This operator takes “knowledge” encoded in the second argu-
ment to rewrite the expressions in the first argument. Note that
the substitution only applies to the right-hand-side expression,
not the variable names on the left-hand side.

Operator Definition 3 (delete(·, ·)): The delete operator is
designed to help reduce the information content of a data point
in P . For instance

delete ({x = x + 1; z = x}, {x = x + 1}) = {z = x}.

This helps to remove some information content when it is
deemed to be irrelevant. delete helps reduce memory and
processing overhead when AoS is implemented on a computer.

Operator Definition 4 (interp(·)): The interp operator is
an arithmetic expression simplifier. For instance

interp ({x = z + 3y; y = 2; z = y; })
= {x = 8; y = 2; z = 2}.

This operator provides the interpretive power to convert an
arithmetic expression into a simpler expression or a numeric
value. By converting certain arithmetic expressions into nu-
meric values, the interp operator can be thought of as a
calculation engine that translates arithmetic expressions into
numerical quantities. There are certain cases where a set of key-
value pairs might involve circular references. This is handled
by always stopping the expression rewrite process when a
key-value pair presents the fixed-point format (x = f(x)). For
instance, whenever x = 3x, the expression rewrite procedure
would stop, since this key-value pair can be interpreted as a
fixed-point equation.

These four operators, merge, substitute, delete, and
interp, are all closed under the domain P . When applied
to certain data point in P sequentially, one may use the
compositions of these four operators to define other useful
operations. For example, one may construct a new binary oper-
ator combine(p, q) = interp(merge(substitute(p, q), q). The
ability to construct new operators based on a small set of
primitive operators is an important feature of P .

Domain Definition 2 (B: Boolean Domain): Whether or
not an AoS model satisfies certain constraints is encoded in
a Boolean expression such as “prob > 0.5 and cost < 300.”
In this example, the values of the variables prob and cost are
supplied by the information content in the domain P . The
operators in this domain are Boolean operators such as and,
or, negate, and interp. The first three operators’ functions
are well-known Boolean operators, and the interp operator is

Fig. 1. Composition domain C depicted as a bipartite graph.

simply a function that translates an expression into a Boolean
value or a simpler Boolean expression. The interp operator
in the Boolean domain is equivalent to the interp operator in
the Properties domain. An example of interp in the Boolean
domain is

interp ((x − x > 1) or (z < 3)) = z < 3.

Domain Definition 3 (C: Composition Domain): The com-
position domain C is the third element in AoS’s triple. It is
a bipartite graph data structure. An element in C encodes a
system as a collection of smaller building blocks and a set
of relationships between them. The bipartite graph structure
enforces modelers to distinguish between two kinds of building
blocks of a system that represent data and functional units of
abstraction. The data and functional units are named Objects
and Processes. When a point p = {x = 2; y = 3} in P is as-
sociated with an Object, it is interpreted as a set of parameters
that describes the Object. When p is associated with a Process,
it is interpreted as a set of functional operations that assigns
a defined value to variables named x and y. To encode the
structure of interactions between multiple building blocks, the
relationships between Objects and Processes can be graphically
represented as directed arcs between them. Each directed arc is
associated with a Boolean expression, and its applicability is
constrained by the result of the Boolean expression.

The bipartite formalism forbids arcs to directly connect two
Objects or two Processes. This bipartite formalism ensures that
all system abstractions can always be mechanically transformed
among one of three possible cases: pure data abstraction, pure
functional abstraction, or a composition of the two. The bi-
partite formalism also makes it easier to utilize computational
models that are also based on bipartite graphs such as Petri net
[20], Bayesian Belief Network, and System Dynamics. By us-
ing graph manipulation operators, such as union and subtract,
the structure and information content of graphs can be com-
bined and divided. Examples of these bipartite graphs are
shown in Figs. 1, 2, and 4.

B. Algebraic Domain for Design Process Abstraction

Domain Definition 4 (AoS: AoS Domain): The three do-
mains, in AoS’s triple 〈P,B,C〉, are three kinds of algebraic
structures. As a triple, they are considered a data point in the
AoS operand domain. The AoS domain is a composite algebraic
structure, also known as a many-sorted algebra. One may use
the operators in the individual data domains to compose a set
of macrolevel operators that directly apply to instances of AoS
triples. We now propose three operators {encd, enum, eval}
that capture the essence of our model refinement framework as
a many-sorted algebra. AoS can be formally written as

AoS = 〈{P,B,C}, {encd, enum, eval}〉 .
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Fig. 2. Methodology overview.

The operators encd, enum, and eval are described in detail
hereinafter. Table I lists the set of operators and the signature of
the operands for the three domains P , B, and C as well as the
set of macrooperators and signature of the marcooperands for
the macrodomain AoS.

Similar to a source-code compilation process, knowledge
about system composition can be processed in several stages.
The overall process is to transform a set of abstract modeling
concepts into a set of concrete system design models. This
process can be thought of as a knowledge compilation process,
where the inputs and outputs of this process are sets of system
models. As shown in Fig. 2, we first assume that the Design
Solution Space (everything inside the outer box) is a universe
of knowledge elements that might be encoded in the AoS
language. Fig. 2 shows an iterative knowledge compilation
process that converts Available Knowledge elements and Enu-
merable Model elements into Generated Submodels and back
into Available Knowledge. The design cycle ends when the
Available Knowledge domain contains sufficient information to
implement a design.

As shown in Fig. 2, the process of system model transfor-
mation can be decomposed into three subprocesses. In this
figure, the rectangles represent Objects that store sets of trans-
formed models, and the ellipses represent model transforma-
tion Processes. Each subprocess produces a particular kind of
system model that can be iteratively refined during the overall
design process. All three subprocesses represent algorithms
or data manipulation operators that can be conceptualized as
three individual algebraic operators. Their functional roles are
described hereinafter.

Operator Definition 5 (Encoding: (encd)): The Encoding
process is a system modeling process that often involves a
combination of human intervention and machine verification.
The process takes Available Knowledge into the form of Enu-
merable Model. Enumerable Models are constructed using
appropriate combinations of the operators for P , B, and C.
These operators may be applied to the individual domains in
the AoS triple, and the end result is always an AoS triple with

different content. By using the operators, existing submodels
can be combined with new human-edited new model content.
We argue that any type of information content in Available
Knowledge can always be formally expressed in the AoS do-
main by manipulating the content in their properties, Boolean,
or compositional domains.

At the start of the design process, when no existing models
are available, the Encoding process is like a bootstrapping activ-
ity that takes amorphous knowledge content into the three value
domains of AoS. This creates an initial AoS model that brings
the design process into the algebraic AoS domain. The essence
of the Encoding process is to provide a symbolic representation
for each element of explicitly available knowledge so that we
can employ the algebraic operators. Section IV will provide
additional treatment on this subject.

Operator Definition 6 (Enumerating: (enum)): Once the
system abstraction knowledge is formulated as an Enumerable
Model, it can be submitted to the Enumerating process. The
enumeration algorithm can utilize the model’s information
content to generate all subgraphs of the initial bipartite graph.
These subgraphs represent elements in a set of Generated Sub-
models. All model enumeration algorithms can be decomposed
into individual steps that utilize operators in the three data
and functional abstraction domains P , B, and C. Counting
the original model, the enumeration procedure must be able to
generate one or more models that are distinctively different.
Each generated model instance is a description of a subset
(or partition) of the overall solution space. All the enumerated
models are members in the object Generated Submodels. As
new submodels are generated, it triggers the Evaluating process
to perform model evaluation. By providing implicit constraints
such as counting the loops in the graph only once, this model
enumeration operation will only generate a finite number of
submodels.

Operator Definition 7 (Evaluating: (eval)): Each of the
elements in the Generated Submodels is a combinatorial varia-
tion of the original model. Consequently, each generated model
will have a different subset of specification rules encoded in the
domain P as a by-product of the model enumeration process.
These rule sets can be executed or interpreted to infer additional
knowledge about each of the Generated Submodels. Specif-
ically, rules written in P may be algebraically manipulated
to derive quantitative information about certain metrics of the
models. In addition, these models may be sorted as part of the
Evaluating process and organized into a partially ordered set
(poset) of Generated Submodels. The ranked positions of these
generated models can be used as the selection criteria for a final
design solution.

The Evaluating process is a way to computationally derive
new knowledge about system design from a collection of
subsystem knowledge. Through computation, it changes the
information content in the generated and evaluated models. It
may also enrich the Available Knowledge about the solution
space. The newly acquired knowledge may include the number
of generated submodels, the calculated metric values, and the
ranking order of the calculated metrics.

The three operators encd, enum, and eval computationally
derive elements of knowledge. The elements of knowledge can
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be recursively applied to these three operators to generate more
knowledge. This recursive process ends on one of the three
following cases: 1) when no new models can be generated by
iteratively and exhaustively applying these operators; 2) when
the set of generated models is “good enough” for practical use;
and 3) when available resources or time runs out.

This concludes the presentation of the three model re-
finement operators that directly operate on the AoS domain.
Conceptually speaking, the three operators provide a generic
functional abstraction to categorize the dynamic nature of de-
sign activities.

III. COMPUTATIONAL TOOL FOR AoS

We implemented an executable programming language, OPN
[21], based on the mathematical specification of AoS. The idea
of representing objects and processes in one system description
language is derived from Object-Process Methodology [22]. As
an executable language, OPN is very similar to Petri net; the
detailed comparison between Petri net and OPN can be found in
[21]. The computer program that we created to edit and execute
OPN models is called the OPN-IDE.

OPN-IDE as a modeling tool serves two purposes. First, it
provides a human–machine interface to display and edit the
information content of system models. Second, it also provides
an execution engine that performs automated model compo-
sition and model transformation tasks. The main purpose of
OPN is to streamline experimental modeling activities that are
traditionally done manually.

A. Language in Multiple Views

Recalling in Section II, the abstract data specification of
AoS includes three different domains of information content.
The tool supports the editing and displaying of all three types
of information content using different editable views. Each
editable view visualizes the information content in the mod-
eling language in a different form, such as graph, tree, and
matrix. We created a bipartite graph editor to display and
change the composition domain. The bipartite graph provides
the compositional overview of the subsystems. Subsystems are
categorized as processes and objects, which are represented
by ellipses and rectangles, respectively. When users click on
a “process,” a dialog box pops up and allows users to enter the
transformation rules. When users click on an “object,” a dialog
box would display the current information content captured in
the “object.” When users click on the directed arcs that link
objects and processes, a dialog box opens and allows users to
edit the logical expressions. The screenshot in Fig. 3 shows the
key user interface elements of the OPN-IDE.

B. Algebraic Properties of OPN

The essence of the AoS approach is to treat models as
algebraic entities. The recursive application of operators on
models must always yield models encoded in the same domain
of models. To facilitate this closure property of model manip-
ulation, OPN-IDE’s editable views are laid out to support this
model production concept.

In Fig. 3, the diagrammatic view of the metamodel is shown
in the upper-left corner. A metamodel is the original specifi-
cation that describes a design solution space (see Fig. 2). The
specification can be visualized in the tree view or the matrix
view located in the lower-left corner. The middle section is a
list of model names, which represents the set of Generated
Submodels (or object models) of the metamodel. During the
enumeration phase of model processing, new models appear
in this selection list as they are generated. Users can choose
one of the Generated Submodels by clicking on the list. De-
tailed information of the selected model is shown on the right-
hand-side panel. The right-hand-side panel also contains the
graph view, tree view, and matrix view. It displays the selected
model using the same user interface elements as the generating
model, because they all contain the same data structures. In
our implementation, the enumeration process also performs the
evaluation tasks, so that the generated models also contain the
evaluation results. Users can inspect the evaluation results by
inspecting the tree view or the associated customized views for
different properties of the generated models.

The tool also allows users to save any one of the Generated
Submodels as an independent model file. Then, the submodel
can be edited and executed to generate additional submodels.
The recursive nature of model processing is a natural by-
product of an algebraic language. In programming language
literature, it is like a graphical functional language, since the
language interpreter produces outputs that are also interpretable
graphical models. In our implementation, the layout of the
original model is preserved, so that users can easily identify
the locations of objects and processes via visual inspection.

C. Implementation Details for OPN

The specific implementation details for an earlier version of
OPN are available in [21]. However, the implementation details
concerning the implementation of this AoS framework in the
OPN-IDE are the subject of a planned future publication.

IV. APPLICATION: APOLLO MISSION-MODE STUDY

The National Aeronautics and Space Administration’s
(NASA) Apollo program in the 1960s to “land a man on
the Moon and return him safely to Earth” was arguably the
most ambitious engineering project that had ever been pro-
posed. The transportation system to accomplish this task, in-
cluding rockets and spacecraft, was the central aspect of the
design. A review of the written history [23]–[26] and conver-
sations with the Associate Administrator of NASA at the time,
Dr. Robert C. Seamans [27], reveal that one of the most critical
design decisions in the lunar program was to select the mission
mode.3 This decision directly and indirectly influenced the
design, task, and contract structures of the overall project. The
main challenge was to perform a thorough and technically
sound assessment of alternative designs. Even today, this com-
binatorially complex problem is still considered as a highly

3In aerospace engineering, a mission mode is defined as the number, types,
destinations, and interactions of vehicles for a space mission [28].
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Fig. 3. OPN-IDE screen shot.

critical and complex design problem. As an example of the
applicability of AoS and the OPN-IDE for system design, we
chose to retrospectively study this mission-mode problem using
the contemporary information available to the Apollo engineers
at the time.

Traditionally, the main obstacle of this mission-mode selec-
tion problem is that composing and evaluating the different
mission-mode options often involve labor-intensive construc-
tion of design models and metric calculation routines. As
the project involves many variables, and many segments of
mission-mode options, the complexity of model construc-
tion becomes difficult. If one frames this engineering design
problem using real options theory [10], [29], [30], the main
challenge is to construct the option valuation function. This
valuation function should not only assess financial payoffs and
expenses but also performance metrics of different physical
and organizational consequences. The choice of mission modes
will inevitably affect these interacting variables, such as the
physical configurations of the vehicle, overall vehicle weight,
the probability of mission success, the schedule of first success-
ful mission, and many others. The option value function must
reflect the changes of all these interacting variables. As one
might imagine, it would be difficult to use a single preference
measure as is often proposed in most utility theory. We must

have a way to illustrate the option value in a data structure that
copes with multiple variable types and dimensions.

In this example, we will show that the space of design
options can be represented using an OPN model that can be
considered a model-generating automaton. One OPN model
represents a comprehensive collection of mission modes that
can be “enumerated” from a small set of known vehicle ma-
neuvering techniques. Moreover, the “properties” and “vehicle
maneuvering processes” can be manipulated algebraically to
derive useful metric calculation expressions. This significantly
reduces the required human labor to construct different metric
calculation expressions when the number of possible mission
modes is numbered in tens or even thousands. We also show that
these automatically constructed expressions can be “solved”
numerically when appropriate assumptions are supplied. In the
language of real options, this calculation shows that our tool
can help its users derive the overall “Option Values” in multiple
dimensions.

A part of the mission-mode planing problem can be con-
sidered as a constraint programming problem or configuration
planning problem [14]. However, for mission-mode planning
or motion planning problems [31] that involve sophisticated
dynamic properties of systems, algebraic and scheduling fea-
tures of the OPN modeling language become particularly
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Fig. 4. Model representing mission modes.

useful. Without using algebraic rules to simplify the constraints
during simulation, the sizes of state spaces can easily become
intractable.

A. Encoding the Solution Space

The first step in the process shown in Fig. 2 is to “Encode”
the abstract knowledge about the system design into the compo-
sition, properties, and Boolean domains of the AoS language.

Mission-Mode Composition Domain: The domain of com-
positions (domain C in Table I) is made up of “objects”
and “processes” connected by “preconditions” and “postcon-
ditions.” For the mission-mode selection problem, objects are
used to represent the different steady-state phases of the mis-
sions. Some examples of these phases are Earth launch site,
Earth orbit, interplanetary transit, Moon orbit, and Moon land-
ing site. These steady-state time phases can be characterized
parametrically in terms of position or velocity and therefore
can be treated as the units of data abstraction. Processes in the
mission-mode study are finite-time transitions between steady-
state phases, such as deorbiting, ascending from Earth, and
waiting for rendezvous. The pre- and postconditions in this
composition domain represent the rules that allow a process
to follow an object. For example, descent to the surface can
be accomplished either by directly descending, or by entering
orbit, orbiting, then descending from orbit.

We categorize these mission-mode elements as units of
functional abstractions because they consistently play the roles
of transforming the objects from their previous data states to

one or more new states. Having divided the mission-mode
elements into two separate categories, we may connect any
two consecutive mission-mode elements using directed arcs
representing the pre- and postconditions. Note that objects may
only connect to processes and vice versa, since this abstrac-
tion scheme of mission modes4 enforces the bipartite graph
formalism. The overall mission-mode possibility space can be
therefore represented as a bipartite graph, as shown in Fig. 4.
By using this modeling approach, a complete mission mode is
a composition of many mission-mode elements.

Mission-Mode Properties Domain: The properties domain
P of the model encodes the systems attributes or behaviors.
Following common aerospace engineering practice, we recur-
sively used the rocket equation to calculate vehicle masses,
depending on the velocity increment they must supply, their
payload, and their ordering in the mission mode. Mass is
considered a good proxy for cost of development and operations
of space hardware. The rocket equation provides a framework
for deriving mass-based metrics [33]. The equation is given as
follows:

mf = mi exp
(

−ΔV

g0 · Isp

)

where ΔV is the difference in velocity over entire period of
the maneuver, g0 is the gravitational constant, Isp is the specific
impulse of the propulsion system, mf is the final mass after the

4Frazzoli’s work on Maneuver Automata helped inspire our abstraction
scheme [32].

Authorized licensed use limited to: MIT Libraries. Downloaded on May 31, 2009 at 22:51 from IEEE Xplore.  Restrictions apply.



KOO et al.: ALGEBRA OF SYSTEMS: A METALANGUAGE FOR MODEL SYNTHESIS AND EVALUATION 509

TABLE II
PROBABILITY TABLE

maneuver, and mi is the initial mass before the maneuver. The
two mass terms mf and mi can be broken down as follows:

mf = mbo + mpl

mi = mbo + mpl + mprop

where mbo is the burnout (structure-only) mass, mpl is the
payload mass, and mprop is the propellant (fuel) mass. For a
multistage rocket system, the rocket equation can be applied
recursively for each maneuver. If the “payload” of a stage is
actually another rocket with its own fuel and payload, then
mpl becomes the initial mass for the next application of the
equation.

In our study, values of constants such as the structural mass
ratios, propulsion characteristics, and models for crew compart-
ment sizes were taken from a combination of historic data and
the assumptions used in the contemporary 1961 Houbolt Report
[34]. These specific details and the governing rocket equation
were entered in the P domain.

In addition to lift-off mass, the other major factor in selection
of mission mode was operational risk. A simple model of
the relative risk of various operations, shown in Table II, was
derived based on expert opinion of lunar exploration vehicle
designers. This table represents relative risk, not absolute risk.
The risks of the various processes were encoded in the model.
We present numeric values here for historical reasons and to
help the reader visualize the language’s numerical ability to
compute quantitative values. If the probability measures had
not been known at the time of model execution, they could have
been encoded as symbolic unknown variables. The interpreter
for the properties domain P would have automatically con-
structed algebraic expressions and simplified them according
to the known and unknown quantities associated with different
mission modes.

Given these properties about individual mission-mode ele-
ments, we can assign these properties to transformation rules
in different processes. For example, the two rules regarding
the mission-mode risk and rocket mass can be written as two
separate rules using domain P

{ prob = prob ∗ 0.95;
massR = massR ∗ staged(dV, Isp, 3); }

where massR is the ratio of final to initial mass, prob is the
probability based on relative risk, and staged() is a multi-
argument function for calculating staged rocket performance.
The recursive definition of massR should be interpreted as a

previous massR value multiplied by the function staged().
This statement is similar to a typical assignment operation in
a procedure programming language.

By using OPN-IDE, the function staged(); can be imple-
mented in any procedural language, such as Python or Java.
The function signature of staged() in domain P is considered
an algebraic entry. When all its arguments are available, the
numerical value will be calculated and the value will replace
this function signature in the expression. Because OPN’s in-
terpreter employs the concept of partial evaluation [35], when
some argument values are unknown, the function signature will
carry on as a part of the arithmetic expression to be determined
later.

Mission-Mode Boolean Domain: The Boolean domain B is
made up of Boolean expressions that define the conditions for
feasible models. For example, one may write the expression
prob > 0.1” to impose a rule that the probability of success
must be greater than 10%. These Boolean expressions are
associated with the incoming and outgoing arcs connected to
Processes. In our OPN engine implementation, as the Enu-
merating operator executes, it also evaluates these parameters
whenever possible, so that models that fail to satisfy these
Boolean conditions will be eliminated. The result is that only
models that are feasible under all of the logical conditions
would reach the “Earth Landing Site.” This modeling ap-
proach effectively transforms the feasibility problem of space
exploration missions into a reachability problem of a model
enumeration process.

B. Enumerating Models

The second process in Fig. 2 is Enumerating. This process
translates the Enumerable Model into a set of Generated Sub-
models. Based on a breadth-first traversal algorithm of the OPN
graph, the different mission modes are composed through the
combination of mission elements proposed by domain experts.
The enumerator operation basically lists all the variants of the
original model. The detail of the enumeration algorithm is doc-
umented in [21]. Intuitively speaking, each generated submodel
is like a travel itinerary of the astronauts. It documents the
sequence of using particular “Processes” to arrive at specific
mission-mode “Objects” and the conditions they encountered
at the arrival time. Since the enumeration process produces
composed models that are also in the AoS model domain, the
enumeration process can also be characterized as an algebraic
operator. The enumeration process is an algebraic operator with
respect to the AoS, because its input is a set of models (in most
cases, just one element in that set), and the output is also a set
of system models. It fulfills the closure condition of algebras.

C. Evaluating Models

The third step of Fig. 2 is Evaluating, which depends on
system metrics recorded by the designer during the Encoding
process and itineraries developed during the Enumerating
process. Fig. 5 shows an example of an evaluation. The mission
mode m at the Earth launch site has an initial probability and
mass ratio. As it is transformed by the process, the probability
is decreased, and the initial mass needed is increased (by this
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Fig. 5. Evaluation example.

Fig. 6. Scatter plot representation of the mission modes.

bookkeeping scheme). The postcondition would eliminate any
mission mode with probability less than or equal to 0.9 at
this transition. As shown in the diagram, the properties can be
treated as data that indicate the current state of a model and also
can be used as transformation rules to evaluate transformed
states.

D. Mission-Mode Example Summary

The Apollo mission-mode model generates and evaluates
nine unique mission modes for sending humans from the Earth
to the Moon and returning them. Fig. 6 shows a summary chart,
showing the cumulative probability of success and initial mass
of the nine mission modes. The “utopia point” is in the lower
right—a mission mode having low mass and high probability of
success.

In Fig. 6, we can see the three major mission modes for
Apollo: Earth orbit rendezvous (EOR), lunar orbit rendezvous
(LOR), and Direct (not stopping in either Earth or lunar
orbit). Variants of these modes are possible, including EO+LO,
stopping in both Earth and lunar orbit, but with no rendezvous
(the mode originally favored by NASA). The mission mode
involving Earth orbit then lunar orbit rendezvous (denoted
EO+LOR) was the mission mode eventually chosen for the
Apollo mission in June 1962. According to our study, the choice
of EO+LOR was a good compromise between vehicle weight
and relative risk and was the closest to the “utopia point” in the
design space. By visual inspection, the historical choice is the
middle one of the three options that locate on the “Pareto front”

of the tradeoff curve [36]. The Pareto front is a collection of
points approximating the set of nondominated solutions. It is
shown with a red line in Fig. 6.

This study showed that a model manipulation tool such as
OPN-IDE could be used to automatically construct models
based on a collection of explicitly stated assumptions and
feasibility rules. Without OPN, each of the mission modes
must be manually enumerated, and the respective formulas for
the “total mission mass,” and “relative probability of mission
success,” must be manually constructed. Then, some computer
program or calculator procedures must be manually typed into
the computer to conduct the evaluation. The algebraic nature
of the OPN language made it particularly easy to change the
assumptions of these calculations. For example, one may easily
change the value of the specific impulse of the fuel, denoted as
Isp, and it would immediately produce a new set of numerical
results of all the mission modes, respectively.

Of the three steps in the outline, the Enumerating and
Evaluating steps can be realized as mechanical operations, so
they are done automatically by the OPN kernel. The Encoding
operation requires human intervention. The human modeling
activities are realized by adding or removing elements in the
bipartite graph, or rule entries written in L and logical expres-
sions. These human-initiated model refinement tasks can be
mechanically recorded as union and subtraction operations on
the three value domains of AoS. The fact that all models can be
encoded and manipulated in value domains of one functional
programming language ensures the algebraic nature of this
approach.

E. Other AoS Applications

The algebraic principles in AoS and the modeling language
OPN have been successfully applied to several other more
complex applications. It was used to study the varying composi-
tional structures of different designs and assess the interactions
between many types of variables. Other published examples
include the following.

1) Study of Moon and Mars exploration architectures for the
NASA Vision for Space Exploration [28]. In this study,
over a thousand alternative feasible mission modes were
generated and compared for human travel to the Moon
or Mars.

2) Study of electronics pods for a military aircraft [21].
This study demonstrates OPN’s ability to reason about
the possibility space of physical configurations under
incomplete information.
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3) Study of space-shuttle-derived cargo launch vehicles
[37]. This study generated and evaluated hundreds of
models for evolving space shuttle hardware into a new
launch vehicle. This project also uses AoS/OPN as a
method and the tool to perform the trade-space study on
the physical design configuration of the system.

4) Study of NASA stakeholder network models for archi-
tecture evaluation [38]. This study used the OPN-IDE to
build a system for discriminating between architectures
based on a stakeholder-benefit model.

5) Decision-support framework for systems architecting
[39]–[41]. Reference [41] describes the decision-support
framework called architecture decision graph (ADG) that
was developed using the principles of AoS and the tools
provided by the OPN-IDE. ADG was applied to study the
configuration of human lunar outpost architectures.

Additional examples of the application of AoS and OPN
are the subject of future planned publications. These include
a study of oil exploration systems in extreme environments and
a study of the long-term plan for Earth observation for NASA.

V. DISCUSSION

The goal of this language design effort is to provide a
machine-executable framework to support the process of model
composition, reasoning, and selection. Via the three value
domains, AoS allows us to represent submodel composition
tasks as a dynamic process, express qualitative and quantitative
inference rules as propositional statements, and capture the
model selection/feasibility criteria as logical statements. This
three-tiered language enables system designers and modelers
to describe, share, and track the evolutionary paths of the
modeling process; simulate system properties computationally;
and filter the variations of models based on feasibility rules.
Therefore, systems designers are better equipped to accumulate
knowledge about the overall system design.

Enumerating models is usually considered as an intractable
computational task. By using a symbolic programming lan-
guage, such as OPN, it is possible to subjectively control the
number of symbolically distinguishable models. For example,
designers could choose to represent certain variables in the
design as a set of symbolic variables. These variables can
be subjectively assigned with different symbolic values that
are distinguishable from each other, such as SMALL, MEDIUM,
and LARGE. Therefore, the maximum number of algebraically
distinguishable models can be subjectively determined a priori.
This approach is inspired by partial evaluation [42], which en-
ables designers to first tackle potentially intractable computing
problems as a program compilation problem. It first processes
the symbolic content of the model, without fully executing
it. When more information becomes available, it then picks a
“compiled” or symbolically specialized version of the model as
a candidate for further computation or repetitive refinements. In
the process of design exploration, where few variables should
have decisive values, a lot of exploratory computational tasks
could be avoided using this “partial evaluation” technique. In
our implementation, we allow designers to use algebraic rules
to distinguish between models of design spaces based on both

symbolic and numerical values. Without the ability to process
numeric and symbolic values interchangeably in an executable
model manipulation language, it is difficult to approach these
kinds of model enumeration problems.

A notable movement called model-driven engineering
(MDE) [43] is also directly related to our work. Under the MDE
paradigm, models are not just artifacts manipulated by human
hands and minds, they should be generated, analyzed, manip-
ulated, and verified by computing processes whenever pos-
sible. Executable specification languages such as Executable
UML [44] are being developed and used by systems engineers.
However, these methodologies and their tools usually focus on
specifying a particular instance of engineering system design.
At the time this paper was written, rather few features in the
existing Executable-UML tools are designed to help designers
explore the design space at the early and fuzzy front end of
design where creating and experimenting with different kinds
of models may be most appropriate. We did not overlook the
fact that most explorative design activities may involve an
intractable amount of possible models. By using our algebraic
approach, one could use symbolic variables to divide the space
of design possibilities into a manageable number of model sub-
spaces without overflooding the computational capacity of our
model analysis tools. Clearly, this would require some advanced
modeling skills and domain-specific insights in the modeling
process. In any case, our algebraic modeling framework pro-
vides a symbolic basis to organize this type of complexity.

In contrast with others, our framework emphasizes that a
model should be treated as a representation of a set of design
possibilities. Each model should be considered a localized
language for a local design space. With an algebraic approach
to abstraction management, we argue that our model generation
and solution filtering technique better addresses the modeling
needs in model-driven engineering.

VI. FUTURE DEVELOPMENT

The algebra presented here is only one flavor of many
possible algebras. The goal is to present a basic set of alge-
braic operands and operators so that we may use them as a
metalanguage to describe other instances of system description
languages. For example, there may exist other model enumer-
ation schemes that are better than the Petri-net-like approach
presented in this paper. Under the framework of AoS, different
enumeration schemes may be treated as variations of the Enu-
merating operator as long as they satisfy the closure condition
of the algebra. Finding some other enumeration schemes and
more efficient model enumeration and filtering mechanisms is
an important area of our future development.

To make it more convenient for designers to express their
domain-specific knowledge, such as the statistical performance
data of certain devices, we plan to create an OPN kernel that
includes Bayesian Belief Network [45] as part of the calculation
engine. The probabilistic belief structures will be encoded in
the bipartite graph data structure. These new language features
will make the OPN language more expressive. As a modeling
language, when applied to distributed and context-aware com-
puting systems, such as the intelligent workspace described in
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[17], synchronizing different subsystems’ behavior could be a
major challenge. To enable more convenient representation of
synchronized process interactions, formalized barrier and lease
mechanisms should also be included in the OPN language. In
[46], the authors demonstrated that a data-driven synchroniza-
tion mechanism can be introduced into the OPN language. Our
future work is to formalize these synchronization semantics as
a part of the AoS specification.

One key feature of the AoS approach is the Enumerating
operator, which maps the description of a solution set with
the set of solution instances. Clearly, it would be extremely
helpful when highly efficient model enumeration algorithms are
available for enumerating solution instances in more complex
design spaces. Therefore, integrating algorithms that can effec-
tively enumerate feasible solution instances or quickly count the
number of solution instances would be of immediate interest
to the follow-on research. For identifying feasible solutions
quickly, mature and high-performance constraint satisfaction
checkers, often based on binary decision diagram [47], [48]
manipulation algorithms, should be utilized. We have identified
the execution engine KodKod of the language Alloy [49] as a
potential alternative for efficient solution enumeration.

From a designer’s viewpoint, a great modeling tool should
enable designers to make sense of the calculated results, save
time in the modeling process, and quickly leverage a wide
range of sophisticated mathematical algorithms. At the time
of this writing, a prototypical version of OPN kernel has been
implemented in Mathematica [50]. We have also looked into
implementing OPN kernel using other metamodeling envi-
ronment, such as the generic modeling environment [51] by
Vanderbilt University’s Institute for Software. These tools will
allow OPN users to have ready access to a larger collection
of mathematical algorithms, interactive visualization gadgets,
and code refactoring tools. However, without some rigorous
benchmark modeling problems in place, it is hard to distinguish
what are the driving factors in making better design models.
As the software tools mature, and more application experience
of the tools is accumulated, it would be more intuitive to
summarize and compare the pros and cons of this approach in
the format of case studies.

VII. CONCLUSION

This paper shows that algebraic techniques can be imple-
mented as a computational method to manage the abstrac-
tion process of complex system designs. We showed that it
is possible to use a set of objects and processes defined by
domain experts that approximates operands and operators in
a problem-specific algebra. This algebraic model can be iter-
atively submitted to a generic algebraic interpretation engine,
such as the OPN interpreter, to generate many generations of
more specialized algebraic models and perform model refine-
ment calculations. This technique treats system specification
models as instances of algebraic languages and recursively
applies language refinement rules to identify for desirable
system abstractions in the domain of algebraic languages.
Clearly, systematically choosing the most effective language
becomes a central question that needs to be answered. For

computing scientists, searching for an effective design in an
explosive, often denoted as the NP-hard, design space can be a
futile exercise. This algebraic approach partially alleviates the
NP-hard issue by allowing users to partition the design space
into mutually exclusive subdesign spaces, each covered by one
specialized design language. Therefore, it significantly reduces
the size of the problem from a potentially infinite number of
concrete design plans into a finite number of “languages” that
each describes a subset of the infinite number of design plans.
The ability to incrementally narrow the design space using
machine-generated algebraic specifications is the main reason
that we chose “languages” or “algebras” as the medium to
describe system designs.

In [2], Hoare et al. questioned whether a small set of al-
gebraic laws can be directly useful in a practical engineering
design problem. The absence of a tool that can bridge the cog-
nitive gap between mathematical abstractions and engineering
problems may have been the main reason for their conservative
attitude. We hope that by showing our example and tool,
designers can see that a small set of algebraic operations on
models is a representationally efficient way to reason about
certain complex design problems.
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