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ABSTRACT

Stepwise refinement is here regarded as a technique for constructing correct
programs. The main problem considered is how the correctness of an individual
refinement step can be proved. For this purpose, a language of descriptions 1is
defined in which both the programs and their specifications can be expressed.
Correct refinement is then introduced as a binary relation of refinement between
descriptions. Total correctness of programs will be a special case of correct

refinement.

The first main result is a general proof rule by which refinement between
descriptions can be established. The proof rule is formulated in the infinitary

logic Lw,w, and its soundness and completeness proved.

1
The second main result consists in showing how stepwise refinement of programs
can be carried out using descriptions. It will also be shown how stronger proof
rules can be derived from the general proof rule for refinement in order to
handle commonly occurring situations in program development such as operational
and representational abstraction, applications of program transformation rules

and introducing assertions into programs.

CR Categories: 5.24, 4.0, 5.21
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1. INTRODUCTION

The stepwise refinement method, developed primarily by Dijkstral[68,72,76]

and Wirth[71,73], is nowadays an important and well-established program
construction technique. The basic idea of this method is that a program
should be constructed by a sequence of refinement steps, leading from an
initial specification to the final program. Each refinement step results

in a new version of the program, usually improving on the previous version in
some respect. It can, for example, make less severe assumptions about

the basic operations and/or data types available, or it can be more efficient
than the previous version.

Stepwise fefinement was originally proposed in Dijkstra[68] as a constructive
approach to program proving. According to this view, if each refinement step is
very carefully carried out, so that it can be seen to preserve the correctness
of the previous version of the program, then the final program must be correct
by construction. In practice, however, the refinement steps made are often

far from trivial, therefore making it difficult to judge the correctness of

a refinement step on a purely intuitive basis. Examples of such nontrivial
refinement steps include procedure and data type implementations, changes

made in the data structures or control structures of the program, as well as
applications of general program transformation rules.

In this thesis we will consider the problem of establishing the correctness

of a refinement step. A formal system is presented in which correctness of
refinement can be proved, thus providing a rigorous foundation for the use

of stepwise refinement as a constructive proof technique for program correctness.

The approach that we will take here is best characterised by listing some of
the more fundamental goals that we have tried to achieve.



(1) We wanted to stay as close as possible to the way in which stepwise
refinement is used by Dijkstra and Wirth in the references cited above.

We especially wanted to keep the open-ended nature of their method, where

any kind of refinement step is allowed, as long as it can be seen to preserve

the correctness of the preceding version.

(2) We wanted to treat refinements in a broad sense, including not only
implementations of procedures but also refinements concerned with the
data representations and control structures of the program, as well as the

use of program transformations.

(3) We also wanted to keep our programming language as simple as possible. In
particular,this meant that we did not want to introduce such complicated

constructs as procedures or abstract data types into our language.

(4) We wanted to reason about the correctness of a refinement step in a
formal system, with a fixed set of axioms and proof rules, and not base our

reasoning on semantic considerations.

(5) We did not want to invent a formal system of our own, but rather wanted

to use an existing system with well-known mathematical properties.

(6) Finally, we decided to consider only the total correctness of programs,

leaving partial correctness and other possible correctness criteria aside.

These goals serve to distinguish our approach from other approaches to program
proving. Thus the axiomatic technique by Hoare[69,71,72] agrees with
point (2) above, except for program transformations (which are treated in

his style in Gerhardt[75]), and also with (4), but only partially with (1)

and (3) and not at all with (5) and (6). {iarel & all[77] extend Hoare's
technique in the direction we are interested in, treating also total correctness

of programs, but otherwise the same comments hold for their system.



The language to be defined will contain a new kind of primitive statement
called an atomic description. It can be loosely characterised as a non-
deterministic assignment statemenmt with an associated change of scope (i.e.

a change of the set of variables available). The set of descriptions will be
constructed out of the atomic descriptions using standard control structures
such as composition, selection and iteration. We also have a-nondeterministic
binary choice statenment. It will be possible to express both programs and their
specifications in this language, therefore making it unnecessary to consider
two different languages as is usually done,- an assertion language on the one
hand and a programming language on the other. We will devote chapter 3 to

explaining the syntax and semantics of this language.

Goal (1) and, in particular, the open-endedness of stepwise refinement have been
achieved by introducing correctness of refinement as a binary relation between
descriptions. Thus S < S' expresses the fact that the description S' is a
correct refinement of the description S. This refinement relation will be
transitive, thus justifying the stepwise method of program construction.Thus

if

10 e o Sn-l’ S,

is the sequence of program versions constructed, with S0 as the initial

Sg» S

specification and S, as the final program, then the fact that each refinement

is correctly done means that

S. <8

1 — "i+l?
for i = 0,1, ...,n-1. Transitivity then gives us that
So_f_ Sn’

i.e. that the final programSn is a correct refinement of the specification SO.
The refinement relation will be defined in chapter 4, where we show some simple
properties of this relation. In the same chapter we shall also define an equiva-
lence relation between descriptions obtained by requiring mutual refinement

between descriptions. Again in chapter 4 we shall give a characterisation



of refinement using weakest preconditions.

In chapter 5 a general proof rule for proving refinement between descriptions
will be presented, and the soundness and completeness of this proof rule

will be shown. Essentially we will prove S < §' for descriptions S and S' by
computing a corresponding formula of Lwlw, and then prove this formula using

the axioms and inference rules of Lw_w. The weakest preconditions of descriptions
will be needed in order to compute the formula corresponding to S < S'. The

fact that the proof rule given is complete means that we may restrict ourselves

to formal proofs in Lo altogether, i.e. we may ignore semantical considerations.
Some important properties of weaskest preconditions and the refinement relation

will also be proved in chapter 5.

In chapter 6 we go on to show how stepwise refinement is carried out

using descriptions. We will show how to achieve top-down program development,
operational and representational abstraction and how to justify the use of
program transformation rules. For those readers who are not familiar with
the stepwise refinement technique, we recommend a glance at section 6.1 of
this chapter, where an example is given. We will also define a subset of
descriptions which will be called program descriptions, and provide some
syntactic sugar for these. They are not as general as descriptions, but more

convienient to work with in program development.

Finally, in chapter 7 we give an example of formal program development using
program descriptions. We will give special proof rules for handling commonly
occurring refinement steps, such as procedure implementations, introducing
assertions into program descriptions, handling representational abstraction and
changing the control structure of a program description. These special proof
rules will all be derived from the general proof rule for refinement using the
axioms and inference rules of Lwlw, thereby showing the suitability of this logic

for reasoning about programs and the generality of the proof rule for refinement.



2. THE INFINITARY LOGIC Lwlw

We will choose an infinitary logic called Lwlw as the underlying logic for
carrying out proofs of program properties. This logic is an extension of
ordinary first-order logic, allowing disjunctions and conjunctions over a
countably infinite number of formulas. To handle these infinite disjunctions
and conjunctions, we need inference rules with a countably infinite number of
premises, which in turn forces us to accept infinitely long (but countable)

proofs.

The need for infinite disjunctions arises in connection with the proof rule

for loops. The assertion that a loop terminates correctly for a given set

of initial states can be expressed as an infinite disjunction in the following
way: for every initial statc in the given set the loop either terminates
correctly without any iterations, or it terminates correctly after one iteration,
or ...., or it terminates correctly after n iterations, or ... . If the set

of initial states given is infinite, then it will not in general be possible

to give an upper bound N such that the loop will terminate for any initial

state in the set after at most N iteration. Hence the disjunction must contain
an infinite number of subassertions.

The logic Lw,w 1s a special case of a general class of infinitary logics, whose

members are éenoted LoaB. LoR is like ordinary first-order logic, except that

it allows disjunctions and conjunctions over fewer than o formulas, and
universal and existential quantification over variable sequences with fewer than
g variables, where a and B are two infinite cardinal numbers, 8 < a. By choosing
a = wy and B = w, we get Lwlw, in which we allow disjunctions and conjunctions
over countable sets of formulas, but quantification only over finite sequences
1 is
the next bigger cardinal number. Thus a < wy means that o is a countable ordinal

of variables. (w 1is the cardinality of the set of natural numbers, while w

number, while o < w means that o is a finite ordinal number.) If we choose
a =8 = w, we get the usual first-order logic, in which only finite disjunction ,

conjunction and quantification is allowed.



Our treatment of Lwlw below is based on Karp b4 ], with some changes in the
notation. The treatment is self-contained, except.that proofs of the lemmas

are omitted. The lemmas follow quite straightforwardly from the basic theorems
proved in Karp [64 ]. The logic Lwlw is also treated in Scott [65],Feferman [68] and
Keisler [71], just to mention a few. We have chosen Karp[64] as our basis because

it uses a Hilbert type proof theoretic approach to Lwlw.

2.1 The syntax of Lw,w

1

An Lwjw language L is characterised by its non-logical symbols. These are of

three kinds. We have the constant symbols
Cos €1« CE’ oo y £ < 61, 61 < wy
and for each n, 0 < n < w, the n—place function symbols

S S B b E <8y, 8, <u

0’ 1’ AL | g’ 1
and the n-place predicate symbols
Gg: G;]: °°"Gg: KR y £ < 63: 63 < Wy -

Thus the language L can only have a countable number of non-logical symbols.

Each Lwlw language L has the same set of logical symbols
~ = A VY = )

and the same set of variables
Vos Vo ""Vg’ oo s & < w) -

Thus L has w, variables.

1

If L and L' are two Lwlw languages, such that each non-logical symbol of L is a

non-logical symbol of L', then L' is said to be an expansion of L.



The terms of L are defined as usual:
(i) Each variable is a term of L.
(ii) Each constant symbol of L is a term of L.

(i1i) If tys-..,ty are terms of L and F is a k-place function symbol,
then F(tl,...,tk) is a term of L.

To be more precise, we should define the set of terms of L as the least set
containing the variables and the constants of L and closed under rule (iii).
The inductive definitions given here should always be understood in this way,
i.e. an element belongs to an inductively defined set if and only if it can be
seen to belong to the set because of the rules given for defining the set.

The formulas of L are defined as follows:

(i) If ty and t, are terms of L, then t. = t, is a formula of L.

1
(ii) 1If tl,...,tk are terms of L and G is a k-place predicate
symbol of L, then G(tl,...,tk) is a formula of L.

(iii) If AO is a formula of L, then (~ AO) is a formula of L.
(iv) If AO and.Al‘are formulas of L, then (AO = Al) is a formula of L.

(v) If 0< 68 < Wy and Ag is a formula of L for £ < §, then

(gQé Ag) is a formula of L.

(vi) If v is a finite nonempty sequence of variables and AO is a
formula of L, then (VVAO) is a formula of L.

The formula (5Q6 Ag) is a shorthand for the formula (A AO...A ...), where

3
AO"'Ag"° is the (possibly infinite) sequence of formulas A_., £ < 6. In
Karp[64] infinitely long sequences of this kind are given rigorous treatment.
We will here relay on the intuitive notion of an infinite sequnce of formulas,

referring to Karp[64] for a formal definition of the concepts presented here.

The other connectives and quantifiers are introduced as abbreviations as usual:



(i) (AO A Al) stands for (gQZ Ag)’

(ii) (g¥5 Ag) stands for (AEQ5 (~A£)), § < wy

(iii) (AO v Al) stands for (g¥2 Ag)’

(iv) (AO & Al) stands for ((AO = Al) A (Al = Ao)) and

(v) (EIVAO) stands for (NVV(~AO)).

An occurrence of a variable Vg in a formula is said to be bownd, if the
occurrence is within a subformula of the form (vv A'), where Vg is one of the

variables of v. We say that an occurrence of a variable v, in a formula is free,

€
if this occurrence is not bound. The variable Vg is said to be free in a formula,
if there is a free occurence of the variable Ve in the formula. Similarly, the
variable Vg is said to be bound in a formula, if there is a bound occurrence of

the variable v, in the formula.

£

Let t .,tk be terms of L, and let x 9 X be distinet variables, 1.e.

1’ 1
for each i,j such that 1 <i,j <k andi # j, x; # X; Let t be a term of L.
Then t[tl/xl""’tk/XQ denotes the term of L obtained by substituting

simultaneously for i = 1,...,k the tem t; for each occurrence of X5 in t.

If A is a formula of L and t is a term of L, then t is said to be free for the
vartable Vg in A, if no free occurrence of Vg ia A is an occurrence in a subformula
(vwA') of A, where v contains a variable that occurs in t.

let t

.,t, be terms of L and S SERERERY be distinct variables. Let A be a

oo
formuia of LF Then A[tl/xl""’tk/xﬁ denotes the formula of L that we obtain

by first changing the variables bound in A so that each term t. will be free

for X{ in A, and then substituting simultaneously for i = 1,...,. the temm t.1 for
each free occurrence of x; in A.  The replacement of bound variables with

new variables 1s assumed to be done in some systematic fashion, so that the

formula A.&l/x ,tk/xk] will be uniquely defined.

1,0-.

A formula of L that does not contain any free variables is called a sentence.
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2.2 The semantics of Lwlw
We denote the set of truth values {tt,ff} by Tr. Here tt stands for "true"
and ff stands for 'false''. A k-place predicate on the set D is then a function

from Dk to Tr, assigning a truth value to each k-tuple of D.

A structure for L is a pair M = <D,I> , where D is a nonempty set and I is a
function that assigns to each constant symbcl cof L an element in D, to each
k-place function symbol of L a k-place function in D and to each k-place predi=
cate symbol of L a k-place predicate on D.

Let V be a nonempty set of variables. A V-gssignment i<n D is a function s:V > D.
The set of all V-assignments in D is denoted DV. Given a V-assignment s in D,

the distinct variables XppeeesX) and the elements CORRRRT L of D (not necessarily
distinct), s<al/xl,...,ak/xk> denotes the V'-assignment in D, where

Vi =V U {xl,...,xk} and s'(xi) = a; fori = 1,...,k, while s‘(vg) = s(vg) for
each v, € V, v

g

: # x; for i =1,...,k.
Let M = <D,I> be a structure for L. Let t be a term of L, and let V be a set of
variables such that any variable occurring in t belongs to V. We define the

value of t in M for the V-assignment s, denoted ValM(t,s), as follows:

(1) If t is the variable Ve in V, then ValM(t,s) = s(v

(ii) If t is the constant symbol c

g

£ then valy(t,s) = I(cg).

(iii) If t is the temrm F(tl,...,tk), where F is a k-place function
symbol, then ValM(t,s) = I(F)(ValM(tl,s),...,valM(tk,s)).

Similarly, we define the value of the formula A in M for the V-assignment s,

when each free variable of A is in V, to be an element of Tr, denoted ValM(A,s):
(1) If A is t; = t, then ValM(A,s)=tt iff ValM(tl,s) = ValM(tZ,s).

(1i) If A is G(tl,...,tk), where G is a k-place predicate symbol,
then ValM(A,s) = I(G)(ValM(tl,s),...,ValM(tk,s)).
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(iii) If A is (~AO), then valM(A,s) = tt iff valM(AO,s) = ff.

(iv) If A is (Ag = Aq), then valy(A,s) = tt iff valyq(Ag,s) = ff
or valM(Al,é) = tt.

(v) IfAis (gQﬁ Ag)’ then ValM(A,s) = tt iff valM(AE,s) = tt
for each £ < §.

(vi) If A is (VVAO), then valM(A,s) = tt iff
k
valM(AO,s<a1/x1,...,ak/xk>) = tt for every <@p,...,3> €D,
where Xpseee X are the distinct variables occurring in v.

LEMMA 2.1 Let s be a V-assignment in D and let s' be a V'-assigmment in D.

If Loth V and V' contain each variable occurring in the term t, and if S(VE)=S' (Vg)
for each such variable Ve in t , then valM(t,s) = valM(t,s'). Similarly, if

both V and V' contain each variable occurring free in the formula A, and

s(vg) = s’(vg) for each such free variable VE’ then valM(A,s) = ValM(A,s').

Proof: Thecrems 3.5.5(i) and 9.1.5 in Karp 64 1. ¢

We say that the formula A holds in the structure M = <D,I>, if for some set V of
variables containing all the variables free in A, we have ValM(A,s) = tt

for every V-assignment s in D. By the lemma above,the choice of V does not
affect the property that a formula holds in M, as long as we choose a set V

that contains each variable free in the formula. '

We say that a structure M is a model for a set A of formulas, if each formula
of A holds in M. The formula A is said to be a semantic consequence of the set
A of formulas, denoted A {=A, if A holds in every model of A. A formula A is
said to be walid 1if it is a semantic consequence of the empty set of formulas.

Let L' be an expansion of the language L, and let M = <D,I> be a structure for L.
A structure M' = <D,I'> for L' where I'agrees with I on the nonlogical symbols

of L is said to be an expansion of M to- L'.



2.3 Proofs in Lwlw

Karp[64] gives an axiom system for Lwlw . In this system we have the

following axtom schemes:

1. (Ay = (A = A))

12. ((A0=> (A1=>A2)) = ((A0=>A1) = (A0=>A2)))

NL. ((My =~A)) = (A = Aj))

Cl. (£é5 (A5 =>A£) => (A(S > ¢85 Ag))), 0 <6< wy

C2. (£é6A£=An)’ n<6,0<6<w1

Ql. (VV(A0 = Al) = (AO =»VVA1)), if no variable of v is free in AO
Q2. (VVAO = Ao[tl/xl,...,tk/xk]), where X]se++,X) are the distinct

variables of v

El. t, =t

1 1
E2. (iék (t;=t]) = F(ty,-+.5t) = F(t],...,t}))

B3. (3 (557¢)) = (6(ty5e-+rty) = G(t],m+-,t0))).

The inference rules of this axiom system are:

Ags (Ag = Ay

MP
A
Ay viih s, £ <8
CN. 0° ,gi ’g Ty 0<6<w1
£2s A
A
&N, —2
VVAO

Here AO""’Ag"" are formulas of L, ty "”tk’ti"“ti are terms of L, F is

a k-place function symbol of L, G is a k-place predicate symbol of L and v is a

nonempty sequence of variables.
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A proof in L of the formula A from the set A of formulas is a sequence

By +vsByy «-esB

0’ n

of formulas of L, where n < Wy A= Bn’ and for each & < n, Bg is either

an axiom, a formula of A or has been obtained from previous formulas in the
sequence by applying one of the inference rules. We say that A is provable

from A, denoted Al-A , if there is a proof of A from A. We say that A is
a theorem, if A is provable from the empty set of formulas.

The following results about Lw,w will be useful later. The proof of these

1
results 1s straightforward given the theorems proved in Karp b4 ]. We assume

in the lemmas that A is a countable set of sentences of L.

LEMMA 2.2 (Completeness of Lwlw) For any formula A of L, Al- A if and only
if Al=A.
Proof: Follows from the theorems 11.2.4 and 11.4.1 in Karp [64]. ©

LEMMA 2.3 (Deduction theorem) Let A and B be two formulas of L, where the
free variables of A are Xppe e e Xy Let L' be the expansion of L that we get
by adding the new constant symbols dl""’dk to L. Then A |-A= R in L, if
AU {A [dy/Xse e sdi /3 ] H- B[dl/xl,...,dk/xg in L'.

Proof: Follows from the theorems 11.2.4 and 11.3.1 of Karp[64] .

LEMMA 2.4 (Inference rule for disjunction) If A |- Ag =B forf <8, §<w
then A |- £¥s Ag = B.
Proof: Follows from the definition of disjunction, using axiom Cl and

theorem 11.2.3(ii) in Karp b4] . ©

1

forn<§, § <uw

LEMMA 2.5 (Axiom for disjunction) A l- Aﬁ = g¥5Ag’ 1

Proof: Follows from the definition of disjunction, using axiom CZ. €
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LEMMA 2.6 F A[tl/xl,...,tk/xk] & Vxl...xk(xl=tl A eee A X TY = A)
and F A[tl/xl,...,tk/xk] & Hxl...xk(xl=tl Aaes AXSOA A,

provided that the variables xl,...,xk do not occur in the terms tl""’tk'

Proof: This 1s a standard result of first order logic which also holds for

Lwlw. The proof is here omitted. o

We will not give formal proofs of results in Lwlw using the axioms,

but will be content with informal arguments. We will, however, try to

make these arguments correspond as closely as possible to formal
constructions of proofs in Lwlw. Because the proofs in Lwlw may be infinitely
long, a completely formal proof by oxhititing the sequence of formulas
constituting the proof cannot in any case be given. Instead we have to use
mathematical induction, by which the existence of a certain proof sequence

can be shown.

The deduction theorem will be used in an informal way, by temporarily regar-
ding the variables free in the assumption formulas as constants. This means
that we are not allowed to use the rule GN for universally quantifying

variables that occur free in assumption formulas.



15

3. DESCRIBING STATE TRANSFORMATIONS

The language of descriptions will be defined in this chapter, the syntax in
section 3.1 and the semantics in section 3.2. The language will be non-
deterministic, mainly because we allow program specifications to occur as

parts of descriptions, and there is no reason to require program specifications

to be deterministic.

The language will contain a new kind of primitive statement called an atomic
description. This can be roughly described as a nondeterministic assignment
statement with an associated change of scope. In addition to this, the language
contains the usual control structures of composition, selection and iteration,

and also a nondeterministi¢ binary choice construct.

The semantics of the descriptions will be of the denotational type, making use
of the approximation relation for nondeterministic state transformations defined
in Plotkin[76]. We will be following de Bakker[77alquite closely, the main
deviations resulting from the fact that we have to consider state transformations
between different state spaces and that we do not require the nondeterminism to
be bounded.
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3.1 Syntax of descriptions

We will first introduce some special terminology for finite sequences of
elements, as we are going to need this kind of construction quite often in the
subsequent analysis. A finite sequence of elements of a set A will be called a
list of elements of A. If x is a list, then 2(x) is the length of the list, and
the elements of the list x are x

120
brackets for lists, i.e. x = <Xl""’X2(x)> . The empty list, with 2(x) = 0, is

.,XR(X), in this order. We use angular
denoted <>. The set of elements in a list x is denoted X.

For any function f:A - B, the extension of f to a function from lists of elements

of A to lists of elements of B is defined by

f(<xl,...,x£(x)>) = <f(xl),...,f(x2(x))> ,

where x are elements of A. If x and y are lists of elements of A,

then

1% (x)

<X,y> = <Xl""’XR(X)’yl""’yz(y)> ,
and if 2(x) = 2(y),
<x/y> = <Xl/ylv’”"x,Q(X)/y2(y)> and

X =Yy X} TY{ A A Xz(x) = yz(y).

Let from now on L be some fixed Lwlw language. If t is a term of L, then var(t)
1s the set of all variables occurring in t. Similarly, if Q is a formula of L,
then var(Q) is the set of all variables free in Q.

The set of descriptions is defined by induction as follows:

(i) If x and y are lists of distinct variables, X N y = @, and

Q is a formula of L, then
axBy.Q (atomic description)

is a description. (The letters o and g are key-words, used to

identify the lists x and y.)
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(ii) If S and S' are descriptions and B is a formula of L, then
(S;S") (composition)
(SvSsS") (nondeterministic choice)
(B->S 1 S") (selection)
(B *S) (Zteration)

are descriptions.

A program usually describes a state transformation, in which a set of variables
are assigned new values. A description will be a generalisation of this, by also
allowing the set of variables itself to be changed. Thus the effect of the atomic
description oxBy.Q, where x = Xpsee X and y = <YpseeesY,> » On a set V of
variables is the following. The resulting set of variables will be

W= (V- {yl,...,yn}) U {xl,...,xm}, i.e. the variable yq,...,y, will be deleted
from V and the variables Xppeses Xy will be added to V (some of the variables in x
may belong to V already). The variables X yeeeX are assigned new values so
that the condition Q will be true, while all other variables of W have the same
value they had before (Q is a condition on the variables in x and V). This
transformation will be nondeterministic if there is more than one assignment of
values to the variables in x that makes Q true, and it will be considered not to
terminate when there is no assignment to x that makes Q true.

The descriptions (S ; S'), (B» S | S') and (B * S) provide the usual control
structures ( we write (B »S | S') for if B then S else S' and (B * S) for
while B do S). The description (S v S') is a nondeterministic choice, i.e. either
S or S' will be executed, the choice being made nondeterministically. Thus we
have here an ordinary iterative language, with the exception of the atomic
description. As arbitrary formulas are allowed in the atomic description, the

descriptions are not usually machine executable.

Let fin(S,V) denote the resulting set of variables for a description S and an
initial set V of variables. Then fin(S,V) is defined as follows. For every
description S we have fin(S,0) = @. For a nonempty set V of variables
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we define fin(S,V) by cases as follows:
{(V-WUi,ifmﬂ@cvui,ycv

(1) fin(axBy.Q,V) = ¢ otherwise

(2) fin(s'; s",V) fin(S",fin(s,V))

l fin(S,V), if fin(S\V) = fin(S",V)

(3) fin(s'v s",V) @ otherwise

fin(S,V), if var(B) = V, fin(S,V)=£in(s",V)

. L IeL) -
(4) fin(B » S|s3V)= i @ otherwise

Vv, if fin(S,V) = V and var(B) = V
(5) £in(B * §%,V) = { @ otherwise
Let V and W be two sets of variables, V,W # @. Then S is said to be a
legal description from V to W, denoted S:V -+ W, if fin(S,V) = W. The set V
of variables is said to be a legal initZal space for the description S, if
fin(S,V) # @. The set W is said to be the fZnal space of the description S
for the initial space V, if fin(S,V) = W.

If S is a legal description from V to W, then each corponent description of S
will be assigned a unique initial legal space determined by S and V, and
consequently also a unique final space. The initial and final spaces of

the components of a description S:V » W are determined as follows:

(1) If S= (8", S'"), then S":V > fin(S,V) and S":fin(S,V) - W.
(2) If S= (8" v §"), then S'":V > W and S":V »> W.
(3) IfS=(B->S'lIS"), then S":V~»Wand S":V-> W,

(4) If S= (B *S'), then S':V » V.,
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3.2 Semantics of descriptions

We start again by fixing our terminology and introducing some notations, this
time for relations. Let D be a nonempty set, and let R be a relation in D, i.e.
Rc D x D. Then R is said to be

reflexive, if d Rd for each d € D,

transitive, if d R d' and d' R d" implies 4 R d" for any d,d',d" € D,
symmetric, if d R d' implies d' R d for any d,d' € D, and
antisymmetric, if d R d' and d' R d implies d = d' for any d, d' € D.

The relation R is a preorder, if it is reflexive and transitive. It is a
partial order, if it is also antisymmetric. If it is a preorder, and in addition

is symmetric, then it is an equivalence relation.

Let now V be a nonempty set of variables, and let D be some nonempty set. Then

the state space determined by V and D, denoted VD, is defined as Vp = pV u{L, }.

Here DV is as before the set of all V-assignments in D, i.e. the set of all P
functions s:V -» D, while lV,D 1s a special element not belonging to DV, which
is introduced for the purpose of modeling nontermination. The elements in

D’ are called proper states, while lV;D is called the undefined state.The
subscripts of the undefined state will usually be omitted when it is clear

from the context to which state space the undefined state belongs.

The idea of using the undefined state is to make the possibility of nontermination
explicit. Thus, if A is the set of possible final states of a computation, we
will add to A the undefined state if and only if there is a possibility that

the computation may not terminate.

The set of all nonempty subsets of VD will be denoted PD(V). Let'W be another
nonempty set of variables. A (nondeterministic) state transformation

from Vp to Wy will be identified with a function f:VD > PD(W), sat%sfying the
condition f( lV,D) = {lW,D }. For each proper state s € V, f(s) will be the
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set of all possible final states of the state transformation. If f(s) 3 1, then
nontermination is also possible for the initial state s. We denote the set of

all state transformations from Vp to Wy with FD(V,W).

A state predicate on VD is a function f:VD »+ Tr, satisfying the condition
f(L V,D : .
tively, a state predicate is an assertion about the values of the variables in
the state.

) = ff. The set of all state predicates on V is denoted ED(V). Intui-

This way of defining state spaces, state transformations and state predicates

is essentially the same as in de Bakker[77al, with the exceptions that we
parameterize these with the initial and final spaces V and W, and that we do

not require that the nondeterminism of the state transformations be bound. The
first of these is motivated by our desire to treat state transformations in which
the state space is altered, the second by the fact that we are interested in

describing programs, and not only in the programs themselves.

The semantical definition of the descriptions will require some preliminary
work, mainly necessiated by the iteration. We start by defining some ways of
constructing new state transformations from old ones. The fact that these
constructions really are state transformations is easily verified.

The state transformations QV,D , AV,D in FD(V;V) are defined by
QV,D(S) = {lV,D}’ AV,D(S) = {s} , for each s € Vp
If f¢€ FD(V,V') and f' € FD(V‘,V”), then f;f' € FD(V,V”) is defined by

(£;£")(s) = U f'(s'), for each s € VD.
s'ef(s)

If £ and f' are elements in FD(V,W), then fvf' € FD(V,W) is defined by

(fvf')(s) = f£f(s) U £'(s), for each s € VD.
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Finally, if b € ED(V) and f, f' € FD(V,W), then (b » fIf') € FD(V,W) is defined by

f(s), if b(s) tt

(b - flf')(s) = {

f'(s), if b(s) = ff

Next, we define a relation of approximation in PD(V) and FD(V,W). If U and
U' are elements of PD(V), then U is said to approximate U', denoted U= U', if

either U 31 and U - {1} c U
or U 21 and U=1U".

If f and f' are elements of FD(V,W), then f is said to approximate f', denoted
fef', if

f(s) £ £'(s) for every s € VD.

LEMMA 3.1. Approximation is a partial order in PD(V) and FD(V,W).
Proof: Omitted. O

To get an intuitive i1dea of this relation, consider a nondeterministic compu-
tation proceeding at a certain speed, where all alternatives are simultaneously
computed (i.e. the computation branches at choice points). Consider two time
intervals t and t', t < t'. Let U be the set of final states reached at t, and
U' the corresponding set at t'. If in U (or U') there is an unfinished computation
going on, then U (or U') is also to include the undefined state. If now U 3 L ,
then all computations have been finished at time t. Therefore the set of final
states at t' must be the same as theset of final states at t, i.e. U = U'. If

on the other hand U 3 L , then any final states reached at t must be a final
state at t' too , although there might be other final states at t', created by
the unfinished computations at t. Thus we have that U - {1} < U'. All in all,

we have that U = U'. In general, U £ U' means that U' cc.1d be a later result

set than U for some nondeterministic computation. (The approximation relation is
treated in more details in e.g. de Bakker[77a] or Plotkin[76].)
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The least element in PD(V) is element {Ll} of PD(V). This follows from
the fact that for any U € PD(V), {1} - {1} =@c<c U, i.e. {L} = U. As a
consequence cf this, 2 p will be the least element of FD(V,V).

?

LEMMA 3.2 1f £ f' and g = g', then f;g = £';g', for any f,f',g and g' in FD(V,V)

Proof: Assume that £ = f' and g £ g'. Consider first the case when f;g(s) 3 1
for s € VD' Assume that f;g(s)‘# {1} (otherwise we have directly that

f;g(s) € £';g'(s) ), and let s" € f;g(s), s" # L. This means that for some

s' € f(s), s' # L, s'" € g(s'). Thus by assumption we have that s' € f'(s)
and also that s" €'g'(s'), i.e. s" € f';g'(s). Therefore f;g(s) € £';g'(s).

On the other hand, if f;g(s) # L, then f(s) # L and for any s' € f(s) we must
have that g(s') 3 1.By the definition of f;g, this then gives that f;g(s) =
f';g'(s). Therefore, we also have in this case that f;g(s) € £';g'(s). o

LEMMA 3.4. If £= f' and g £ g', then (b » f|g) € (b » £'|g'), for any
f,f',g and g' in FD(V;V) and b in ED(V).

Proof: The result follows directly by considering the two cases for s ¢ Vp
with b(s) = tt and b(s) = ff. o

Let Ui € PD(V) for i < w , such that UO =U; =...¢ Un € ... . We define
uu, = v U,
n<w n<w
if Un 31 foreachn < w and
uu = U
n<w B k

otherwise, where Uy 1s the first element in the sequence not containing L.
Obviously nL& Un will be an element of PD(V).
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For fi € FD(V,V), i < w, such that fo = fl € ... E :En € ..., we define ni_] fn
in FD(V,V) by w
(u fn) (s) = U fn(s) for each s € VD'
n<w n<w
Actually Ufn is the least upper bound of the chain fy = fl S ... E fn S ...

and similarly for LJUn, but this information is not needed in the sequel.

Let b € ED(V) and f € FD(V,V). We define for n > 0 the transformations
(b * f)n in FD(V,V), as follows:

b *nd = and

op
b* ™ = o506 * O | Ay ), forn> 0.

We will prove that
b*H% = ®*H™  forn> o0,

First, because is the least element of FD(V,V), we have that

V,D
b*nle m*nl.

Assuming that (b * e (b * f)n+1, n > 0, we have by lemma 3.2 that
£ * )" £550* 07,

from which we get by lemma 3.3 that
b-HG*H 1A Y = G500 1A,

i.e. we have

n+l

b * Hl e p* i,

Then the required result follows by induction.

The state transformation (b * f) in FD(V,V), where b € ED(V) and f € FD(V,V) ,
can now be defined by

b*f) = U b*Ht.

n<w
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Let now M = <D,I> be a structure for L. A formula Q with var(Q) = V, V a nonempty
set of variables, can be interpreted as a state predicate in ED(VW,
denoted intM(Q,V), as follows:

intM(Q,V)(s) = valM(Q,s), for each s € VD, s ¥ 1.

(For s = 1 we always have intM(Q,V)(s) = ff, by the definition of state predicates.

A legal description S:V + W, V and W nonempty sets of variables, will again be
interpreted as a state transformation in FD(V;W), denoted intM(S,V). We define
the interpretation by cases as follows:

{ W(s), if W(s) # @

(i) inty(oxey.QV)(s) =
L {1} , 1f W(s) =@ .

Here W(s) c WD
W(s) 2 s' iff valM(Q,s<s'(x)/x>)= tt and

s(z) = s'(z) for each variable z in W, z ¢ X.

is defined for each s € VD’ s # L1, by

(ii) intM(S'; s'", V) = intM(S',VO 5 intM(S”,fin(S',V)),

inty (', V) v int,(s", V) ,

inty(S'v ", V)

int, (B - S'1S", V) (inty (B, V) - inty(S', V) | inty(s", V),

(intM(B, V) * intM(S',V)).

inty (B * S', V)

Because intM(S,V) is a state transformation, we always have intM(S,V)(l) = {1}.
Note that for the atomic description, case (i), the final states .do not depend
on the values that the variables in x have in the initial state. For an
intuitive understanding of the definition (i), we refer to page 17. The nota*ion
s<s'(x)/x> is explained by reference to pages 10 and 16: Assuming that x is the
list XppeeesX >, s<s'(x)/x> 1is an assignment of values to the variables in

V and X, such that any variable z different from X]see e s Xy is assigned the value
s(z), while the variable X; is assigned the value s'(xi), fori=1,...,m.
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4. REFINEMENT AND WEAKEST PRECONDITIONS

In this chapter we will show that the correctness of a refinement step can

be expressed as a binary relation of refinement between descriptions. This

relation is in turn based on a corresponding relation of refinement between
state transformations. Total correctness of programs can be expressed

using the refinement relation, as well as strong equivalence of programs.

Section 4.1 will be devoted to an explication of the notion of a correct
refinement step, and it will be shown that the refinement relation captures
the intuitive idea of a refinement step being correct. In this section we
also show that the refinement relation is a preorder, thus justifying the

stepwise manner of program construction.

In section 4.2 the weakest precondition of a state transformatior is defined.
It is shown that refinement between state transformation can be characterised
using weakest preconditions. This is a fundamental result, which will be used
in the next chapter to give a general proof rule for refinement between
descriptions.
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4.1 Refinement between descriptions

As remarked in the introduction, a refinement step is in an intuitive sense
correct if it preserves the correctness of the program being refined. A more
explicit formulation of this criteria can be given by introducing the notion
of a program specification. We say that the refinement step leading from
program S to program S' is correct, if the following condition holds:

(A) For any program specification R, if S is totally correct with
respect to R, then S' is totally correct with respect to R.

Programs will in tiis context be descriptions and will thus be interpreted as
nondeterministic state transformations. Program specifications can also be inter-
preted as state transformations in the fcllowinc way. Let the interpretetion
M = <D,I> be fixed, and let S:V » W be a description. A specification R of S
must specify a set Uc Vb. of initial states for which S must be guaranteed to
terminate. It also has to specify for each s € U a set W, of correct final

states. This information can be expressed by the transformation fR € FD(V,W),

Ws’ if s €U
frs) =, ifsgu

The description S will then be totally correct with respect to the specification
R iff fR(s) > f(s) holds for each s € U, where f = intM(S,V). Using the fact that
fR(s) AL iff s € U, an equivalent condition for S to be totally correct with
respect to R is that fR(s) 2L = fR(s) o f(s), for any s € VD. This latter

condition is taken as the definition of refinement between state transformations.

DEFINITION 4.1 (i) If U and U' are elements of PD(V) , then U is refined by U',
denoted U < U', if U » L=U>U"'.

(ii) If f and f' are elements of FD(V,W), then f is refined by f',
denoted f < f', if f(s) < f'(s) for any s € VD'
Using the notation above, we thus have that S is totally correct with respect to

R iff f, < f holds. Actually, any state transformation g can be considered as

R
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a specification, satisfied by S iff g < f holds. This means that S must
terminate for those initial states s for which g(s) # L , and produce a
final state that belongs to the set g(s).

We are thus lead to the following characterisation of a correct refinement step.
Let S and S' be two descriptions, S, S':V - W, with interpretations f = intM(S,V)
and f' = intM(S’,V). The refinement step leading from S to S' is then correct
iff the following condition holds:

(A') For any g € FD(V,W), if g < f holds, then g < f' holds.

IEMMA 4.1 1he refinement relation is a preorder in PD(V) and FD(V,W).

Proof: We prove the lemma only for PD(V), from which the fact that refinement

is a preorder in FD(V,W) then follows easily. For any U in PD(V) we have U o U,
so U < U will always hold, i.e. reflexivity is clear. To prove transitivity,
assume that U < U' and U' < U" holds for U, U' and U" in PD(V). If U> 1, then
U < U" follows immediately. Otherwise, U > U' must hold, and therefore U' 3 1,
i.e. U' >U". Thus U> U" holds, i.e. U < U'" as desired. o

It turns out that the condition (A') holds iff f < f' holds. This follows
immediately from the fact that refinement is transitive and reflexive

(from transitivity we get that f < f' implies (A'), while reflexivity gives

the converse). This gives us the final characterisation of a correct refinement
step. Letting S, S', f and f' be as above, we have that the refinement step

leading from S to S' is correct iff

(A £ < £ holds.

DEFINITION 4.2 Let S and S' be two legal descriptions from V to W, and let M be
M S if
intM(S,V).i intM(S',V). We say that S < S' is a semantic consequence of the set
A of sentences, denoted A I S < S', if S <M S' for any model M of A.

a structure for L. We say that S is refined by S' in M, denoted S <
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Any program specification given in the form of an entry condition and an exit
condition can be expressed as a description (the way in which this is done is
explained in section 6.2). In fact, the mein purpoze of the atomic description 1is
to make this possible. This means that total correctness of descriptions will be
a special case of refinement between descriptions, i.e. S < §' says that §' is
totally correct with respect to S, when S is a description that expresses a

program specification.

The refinement relation induces an equivalence relation in the obvious way. We
say that the state transformations f and f' are equivalent, deioted £ ~ f',

if £ < f' and f£' < f holds. Similarly, the descriptions S and S' are equivalent
in M, denoted S A S*', if S M S' and S' M S holds. Finally, S~ S' is
said to be a semantic consequence of A, denoted A |= S~ S', if A = S<S'
and A I S§' < S holds.

If S and S' are equivalent, then S and S' will be guaranteed to terminate for the
same set of initial states, and have the same set of possible final states for
any of these initial states. S and S' may differ, however, for initial states

for which they are not guaranteed to terminate.

For deterministic programs, S < S' reduces to the usual approximation relation
between deterministic state transformations (see e.g. de Bakker[77al), i.e. for
any initial state for which S terminates, S' will also terminate and gives the same
final state as S. S = S' again reduces to strong equivalence between programs

(see e.g. Mannal74]), i.e. S and S' will terminate for the same initial states

and will give the same final states for these initial states.

In Smythe([76] a relation similar to the refinement relation above is defined
between state transformations of bounded nondeterminacy. Smythe uses it to
prove the existence of a certain powerdomain construction in Plotkin[76 ], under
weaker assumptions than those made by Plotkin. The refinement relation here has
been arrived at independently of the work by Smythe, and is also used for an
entirely different purpose. The connection between our work and the work by
Smythe was pointed out by J. de Bakker.
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4.2 Weakest preconditions

Let f be a state transformation in FD(V,W) and let q be a predicate in ED(W).
We define a predicate wp(f,q) in ED(V),’called the weakest precondition of f
for q, as follows: For any s € VD, s # 1,

wp(f,q) (s) = tt iff for any s' € f(s), q(s') = tt.

As an immediate consequence of this definition, we see that if wp(f,q)(s) = tt

for some s € V_, then f(s) # L , because q(L) = ff, by the definition of

D’
state predicates. This formulation of weakest preconditions for state trans-

formations and state predicates is essentially the one given in de Bakker[77a].

Using weakest preconditions, an alternative definition of total correctness

for descriptions can be given. Let R and S be as in 4.1, i.e. R is a description
from V to W that specifies the correct behaviour of the description S from

V to W. R was interpreted as a state transformation fR in FD(V,W), with

fR(s) = WS for each s € U, and
fR(s) = {1} for each s ¢ U.

Here U was the set of initial states for which S was required to terminate,
while WS was the set of correct final states of S for each initial state s € U,
wsz 1.

Let the interpretation of S in FD(V;W) be f, and define for each s € U a
state predicate qq in ED(W), by

qs(s') = tt iff s' € W, .

Then we have that S will be correct with respect to R iff for each s € VD,

if s € U, then wp(f ,qs)(s) = tt. (1)
To see that this is really the case, assume first that condition (1) holds.
If s € U, then wp(f ,qs)(s) = tt, i.e. for any s' € f(s), qs(s') = tt, and thus
s' € W, for any s' € £(s) . On the other hand, if s' € W_ for any s' € £(s),
s € U, then q_(s') = tt for any s' € £(s) and so wp(f »q.) (s) = tt.
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The boolean operations on truth values can be extended to state predicates
as follows. Let p and p' be two state predicates in ED(V). Then (p A p')
is a state predicate 1in ED(V), defined by

(p Ap')(s) =p(s) Ap'(s), for each s € Vb, s # 1.

Similarly for the boolean comnectives ~, v , = , < . It will be convienient
to use the predicate p also as expressing the condition p(s) = tt for each

s € VD. This is done in the following theorem and will also be used later.

THEOREM 4.3 Let f and f' be state transformations in FD(V,W). Then £ < f' iff

wp(f,q) = wp(f',q),

for any state predicate q in ED(W).

Proof: (=) Assume that f < f' and let q be any predicate in.ED(W). Let s € Vy

be such that wp(f,q)(s) = tt. This means that f(s) # 1, and using the assumption,
this means that f(s) » f'(s). Let now s' € f'(s). Then s' € f(s), and as
wp(f,q)(s) = tt, we must have that q(s') = tt. Thus we have that wp(f',q)(s) = tt.

(e) Assume that wp(f,q) = wp(f',q) holds for any q in ED(W). Let s € VD be
such that f(s) 7 1. Define a state predicate q in ED(W) by qs(s') = tt iff

s' € £(s), for any s' € WD, s' # 1. This means that wp(f,qs)(s) = tt, and by
assuniption, that wp(f',qs)(s) = tt. Thus, for any s' € £'(s), qs(s') = tt, i.e.
for any s' € £'(s), we have that s' € f(s), which means that f'(s) < f(s). This
shows that f < f'. o

This theorem will be used in the next chapter to give a technique for proving
refinement between descriptions.
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5. PROVING REFINEMENT BETWEEN DESCRIPTIONS

The general proof rule for refinement between descriptions will be derived in
this chapter. In section 5.1 we will give rules for computing the weakest
preconditions of descriptions, and show that these rules are correct. In
section 5.2 the proof rule for refinement is then derived, and its soundness
and completeness proved. This proof rule makes use of the weakest preconditions
of descriptions, and is based on theorem 4.3 above.

In section 5.2 we will also give a proof rule for equivalence of descriptions
and present a very useful induction rule for iteration, together with some
other properties of refinement. In section 5.3 we generalise somewhat the
properties of weakest preconditions given in Dijkstra[76]. These properties
will be needed in section 5.4 and later. In section 5.4 we will finally prove
an important replacement property of descriptions, which will provide a justi-
fication for the top-down program development strategy, further discussed in
the next chapter.v
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5.1 Weakest preconditions of descriptions

Let S:V » W be a description and Q a formula of L, var(Q) « W. Let M be a
structure for L. The description S will then be interpreted as a state trans-
formation £ = intM(S,V) € FD(V,W), and the formula Q as a state predicate
q = intM(Q,W) € ED(W). We may now ask for a formula P of L, var(P) <« V , that
describes the weakest precondition wp(f ,q) of £ and q, i.e. we require that
intN#P,V) =wp(f ,q) . (5.1)
This formula P will then give the weakest condition that an initial state
must satisfy so that the execution of S is guaranteed to terminate, and so
that any final state of S will satisfy the condition Q. This section
will be concerned with showing how such a condition P can be computed for
any S and Q, and that the condition P computed has the property (5.1)

required.

We introduce the abbreviations true and false for sentences of Lmlw by

true = af VVO(VO = VO) and
false = aF "~ VVO(VO = VO).

Thus, true will hold for any proper state in any state space V,, while false

will hold for no state in any state space VD.

Next we introduce the abbreviations skip and abort for descriptions, by

skip = af a<>B<>.true and

abort = af a<>B<>.false .

Evidently skip will be the identity transformation in FD(V,V) for any V, i.e.

intM(skip,V) = AV,D

while abort will be the undefined state transformation in FD(V,V), i.e.

1ntM(abort,V) = QV,D .
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Let B be a formula of L, var(B) < V, and let S be a description from V to V.
Then the descriptions (B * S)n from V to V, for n < w , are defined by

B * s)°

abort,

B * S (B~ S;(B* )™ | skip), n > 0.

Using induction on n, it is easily verified that
int

(B * STV = (inty (B,V) * intM(S,V))n, for n < w.

DEFINITION 5.1 Let S be a legal description from V to W, V,W # @, and let R
be a formula of L, var(R) < W. Then the weakest precondition of S for K,
denoted WP(S,R), is defined by induction on the structure of S, as follows:

(i) WP(axBy.Q, R) = 3IxQ A ¥x(Q=R),
(ii) Wp(s'; s", R) = WP(S, WP(S", R)),
(iii) WP(S'v S™, R) = WP(S}, R) A WP(S", R),

(ivy WP(B -» SIS, R) (B = WP(S, R)) A ( ~B=WP(S", R)),

v WP((B * S")'™,R)
n<w

(v) WP(B * S',R)

We make the convention that 3IxQ = Q and Vvx(Q=R) = (Q = R) in (i), when

X = <>, Using this convention, we get from (i) that
WP(skip, R) = true A (true » R) <« R, and
WP(abort,R) = false A (false = R) & {false,

for any formula R of L.

LEMMA 5.1. 1f S is a legal description from V to W, V,W # @, and R is a for-
mula of L, var(R) « W, then WP(S, R) is a formula of L, with var(WP(S,R)) < V.

Proof: The proof goes by induction on the structure of S. We show here only

the basis step, i.e. the case when S = axBy.Q. Because var(Q) < V U X, we

have var(3xQ) < V, as no variable in x is free in 3xQ. Also, because var(R) < W,
and W= (V- ¥y) UXxcVuUX, we have var(vx(Q = R)) < var(Q) U var(R) - X
i.e. var(vx(Q = R)) = V. This means that var(WP(axgy.Q,R) < V. The induction
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step, i.e. cases (ii) - (v) 1in definition 5.1, is proved straightforwardly. o

We are now ready for the main result of this section, i.e. that condition
(5.1) is satisfied by choosing WP(S,R) for P.

THEOREM 5.2 Let S be a legal description from V to W, V, W# @, and let
R be a formula of L, var(R) < W. Then, for any structure M of L, we have that

int, (WP(S, R),V) = wp(inty(S,V), inty(R,W)).

Proof: The proof will go by induction on the structure of S. Let M = <D,I>
be a structure for L. Let

f 1ntM(S,V) € FD(V,W) and
r = int,(R,W) € ED(W).
We have then to prove that

inty (WP(S,R),V) = wp(£,1).

(1) S is axBy.Q. We have in this case that f(s) = W(s), if W(s) # @, and
f(s) = {1}, if W(s) = @, where W(s) is defined by

W(s) 2 s' iff ValM(Q, s<s'(x)/x>) = tt and
s(z) = s'(z) for each z € W - X,

by the definition of the semantics of the atomic description.

(=) Let s € Vj such that inty (WP(S,R),V)(s) = tt. This means that
ValM(axQ, s) = tt and valM(Vx(Q = R), s) = tt,

using the definition of WP for the atomic description, and the definition of
the interpretation of formulas.

Now ValM(ExQ, s) = tt iff valM(Q, s<d/x>) = tt for some list d of elements in
D. If we choose s' € WD by s'(xi) = di’ fori=1,...,2(x), and s'(z) = s(z)
for z € W - X, we have that valM(Q, s<s'(x)/x>) = tt, i.e. s' € W(s). There-
fore W(s) # @, and we have that f(s) = W(s).
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Assume now that s' € W(s), which implies that s # L . Then s'(z) = s(z) for

z €W - X, and ValM(Q, s<s'(x)/x>) = tt. By assumption, ValM(Vx(Q = R),s) = tt,
i.e. valM( Q=R , s<d/x> ) = tt for any list d of elements in D. This means
that ValM(R, s<s'(x)/x>) = tt, by choosing d = s'(x) and using modus ponens.
Because s<s'(x)/x> (z) = s'(z) for any z € W, and var(R) < W, this means

that ValM(R,s') = tt, i.e. intM(R,W)(s') = tt, Thus we have r(s') = tt and

wp(f,r)(s) = tt, as s' was an arbitrarily chosen element of f(s).

(&) Let s € VD such that wp(f,r)(s) = tt. This means that for any s'€ f(s),
r(s') = tt. Therefore we have that 1 ¢ f(s), because r(L) = ff. Thus W(s) # @,
i.e. there is an s' € WD such that ValM(Q, s<s'(x)/x>) = tt and s'(z) = s(z)
for z € W - X. Thus ValM(axQ,s) = tt.

Assume that valM(Q, s<d/x>) = tt. Define s' € WD by s'(z) = s(z) for z € W - X,
and s'(xi) = di for i = 1,...,2(x). Then s' € £(s), which implies that

r(s') = tt, i.e. ValM(R, s') = tt. Because var(R) ¢ W and s<d/x>(z) = s'(z)

for z € W, we have from this that ValM(R, s<d/x>) = tt. This gives

ValM(Q = R, s<d/x>) = tt, i.e. we have that ValM(Vx(Q = R),s) = tt, as d was
arbitrarily chosen. Thus we have proved that intM(WP(S,R),V)(s) = tt.

(i1) S is S'; S'", where S':V > V' and S":V' > W. Define f' = intM(S',V) and
f'' = intM(S”,V'). Then

inty, (WP(S';S",R),V) = int, (WP(S',WP(S",R)),V)

wp(f', intM(WP(S”,R),V')) (by induction hyp.)

wp(f', wp(£f'",r)) (by the induction hyp. again).

Let s € VD. We then have that wp(f',wp(f',Tr))(s) = tt iff for each s' € f'(s),
wp(f',r)(s') = tt , iff for each s' € f'(s), s'" € £'"(s'), r(s'") = tt, iff

for each s" € £';f"(s), r(s'") = tt, iff wp(f';f", r)(s) = tt. Thus we get that
wp(£', wp(£'", 1) (s ) =wp(f';£",1)(s), i.e. inty(WP(S,R),V) = wp(f,1).
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I

(i1i)S is (B * S'). Let intM(S',V)
that for each n < w,

inty (WP((B * $')",R),V) = wp((b * £1)7,1), (5.2)

f' and intM(B,V) = b. We prove first

by induction on n.

For n = 0 we have (B * S‘)O = abort. Let s € VD. We have that
int, (WP((B * $")°,R),V)(s) = inty(false,V)(s) = ££.
On the other hand, we have
wp((b * £1°,1)(s) = wp( 2y pr)(s) = £f.
Thus, forn = 0 we»have that (5.2) holds.

Assume that (5.2) holds for n > 0.

n+l

inty (WP((B * S')" 7,R),V)

inty (WP((B » S";(B * $")" | skip), R},V)

int, ((B = WP(S';(B * S)™,R)) A (~B=R), V)

(b = wp(£', inty(WP((B * S')",R),V)) A (~b = 1)
(b =wp(£', wp((b * £)%,1))) A (~b = 1) (ind. hyp)
wp((b = €150 * £)7 1 Ay ), 1)

n+l

wp((b * £')" 7,1).
Thus (5.2) holds for any n < w.

To prove the case, we have to show that intM(WP(B * S',R),V) = wp(b * £',r),

where

WP(B* S', R) = v WP((B* S, R).
n<w
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First let s € VD be such that intM(WP(B * S',R),V)(s) = tt. This means

that intM(WP((B * S')n,R),V)(s) = tt for some n > 0. Therefore, by the
previous result, we must have that wp((b * f‘)n,r)(s) = tt. More particularly,
this means that (b * f')n(s) # L, and thus that

(b * £)(s) = (b * £)(s),

by the definition of (b * f'). Thus we get that wp(b * f',r)(s) = tt.
On the other hand, assume that s € VD is such that intM(WP(B * S'.R),V)(s) = ff.
This means that intM(WP((B * S')n,R),V)(s) = ff for every n < w , 1i.e.

wp((b * £)™,1)(s) = £f for every n < w . Assume first that (b * £1)7(s) 3 1

for every n < w. In this case we have that
1 = 1 n
(b*£')(s) = Yy, (bx*£)(s),
and thus (b * £f')(s) 5 L . Therefore wp(b * f',r)(s) = ff. If on the other

hand, (b * f')n(s) 7 L for some n, then we have
b * £(s) = (b * £)7(s).

In this case again, we have that wp(b * f',r)(s) = wp((b * f')n,r)(s) = ff.

Thus we get the conclusion that intM(WP(B * S',R),V)(s) = wp(b * £',1)(s)
for each s € Vi which proves this case.

The proofs of the remaining two cases, (S' v S") and (B - S']S"), are omitted. o

A similar theorem is proved in de Bakker[77b]. However, the situation
considered here is sufficiently different from the one considered by

de Bakker to motivate a new proof of this central theorem. de Bakker

proves the result for a programming language with assignment statement and
recursion, and uses a model in which bounded nondeterminacy is assumed,

whereas our language contains the atomic description and only a simple loop,
and we do not assume bounded nondeterminacy. Also, by using an infinitary logic,
we get a more natural expression of the weakest preconditions for loops. (The
use of Lw,w 1in connection with program correctness is also advocated in

1
Engeler[75].)
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5.2 Proof rule for refinement

Let S and S' be legal descriptions from V to W, where V and W are assumed to
be nonempty finite sets of variables. Let M = <D,I> be a structure for L. We

have by definition 4.2, that S M St iff

intM(S,V).i intM(S',V).
By theorem 4.3 we have that this holds iff

wp(inty(S,V),q) = wp(inty(S',V),q) for any q € Ep(W). (5.3)

Let G be a new k-place predicate symbol, where k is the number of variables in
W, and let w be a list of distinct variables such that w = W. Let L' be the
expansion of L that we get by adding G to the nonlogical symbols of L. Then

G(w) is a formula of L'. For any choice of q € ED(W), we can define an expansion
M' of M to L', such that intM,(G(w),W) = q. We achieve this by defining
I'(G)(al,...,ak) = tt iff q(s) = tt, where s(wi) = a., for i = 1,...,k. Then
for any proper s € WD’ intM,(G(w),W)(s) = ValM,(G(w),s) = I'(G)(s(wl),...,s(wk))
= q(s). Conversely, in any expansion M' of M to L', the interpretation in M'

of G(w) will be some predicate in ED(W). Therefore we have that (5.3) is

equivalent to

wp(inty, (S,V),inty, (GW),W)) = wp(inty, (S',V),inty, (G(w),W))
for any expansion M' of M to L'.

We have here used the fact that intM,(S,V) = intM(S,V) and the same for S',

because G is a new symbol that cannot occur in S or S'.

Using theorem 5.2, we finally get that (5.3) is equivalent to
intM.(WP(S,G(w)), V) = intM,(WP(S',G(w)),V), for any expansion
M' of Mto L'.

We formulate this result as a theorem.
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THEOREM 5.3 Let S and S' be legal descriptions from V to W, where V and W are
finite nonempty sets of variables. Let L' be an expansion of L that we get by
adding a new k-place predicate symbol G to the nonlogical symbols of L, where k
is the number of variables in W. Let w be a list of distinct variables, such

that w = W. Then S < M S' iff

WP(S,G(w)) = WP(S',G(w))

holds in any expansion M' of M to L', @

Now, let A be a set of sentences of L. Then A F S < S' iff

S<u S' for any model M of A .

This is again by theorem 5.3 the case iff

WP(S,G(w)) = WP(S',G(w)) holds in any expansion M' of M to L,
for any model M of A . (5.4)

Because A is a set of sentences of L, we have that if M' is the expansion of
Mtol', and M is a model of A , then M' will also be a model of A , now
considered as a set of sentences in L' (not containing the predicate symbol G).
On the other hand, any structure M' for L' that is a model of A will be an
expansion of some structure M for L, where M is a model for A . Therefore,
the set of expansions of models in L for A is the same as the set of models in
L' for A. Using this fact, we get that (5.4) is equivalent to

WP(S,G(w)) = WP(S',G(w)) holds in any model M' of A , M' a
structure for L'. (5.5)

This is finally the same as the fact that WP(S,G(w)) = WP(S',G(w)) is a logical
consequence of A, i.e. (5.5) is equivalent to

A F WP(S,G(w)) = WP(S',G(w)).

This gives us the main theorem, on which proofs of refinement between
descriptions will rest.
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THEOREM 5.4 Let S and S' be legal descriptions from V to W, where V and W are
finite nonempty sets of variables. Let L' be an expansion of L that we get by
adding a new k-place predicate symbol G to the nonlogical symbols of L, where
k is the cardinality of W. Let w be a list of variables such that w = W,

Then for any set A of sentences of L, we have that

AES<S' iff AR WP(S,G(w)) = WP(S',G(w)). ®©

COROLLARY 5.5 (Proof rule for refinement) Let S and S', V and W, G and w be as
in theorem 5.4. Then for any countable set A of sentences of L,

A F S<S' iff AF WP(S,G(w) = WP(S',G(w)).
Proof: By theorem 5.4 and the completeness of h»rn, lemma 2.2.o

We say that S < 8' 1is provable from A, denoted AF S < S', if we from A
can prove WP(S,G(w))} = WP(S',G(w)), where G and w are as in theorem 5.4.
Corollary 5.5 then says that AFS<S' iff AF S <S'.

COROLLARY 5.6 (Proof rule for equivalence) Let S and S', V and W, G and w be as
in theorem 5.4. Then for any countable set A of sentences of L,

A ES~S' iff A F WP(S,G(w)) e WP(S',G(w)).

Theorem 5.4 together with its corollaries provides us with a technique for
proving refinement between descriptions. This technique is complete, i.e.

if 8 < S' is a semantic consequence of the countable set A of sentences, then
there is a proof of S < 8' from A . The completeness is of a rather weak
kind, however, as the proofs that exist may be infinitely long. On the other
hand, the proof technique is sound, i.e. if we succeed in proving § < S' from

A , then S < S' will indeed be a semantic consequence of A.
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Another consequence of theorems 4.3°and 5.2 is the following.

THEOREM 5.7. Let S and S' be legal descriptions from V to W, V and W finite
nonempty sets of variables. Let M be a structure for L, and let Q be any formu-
la of L, var(Q) = W. If S < M S', then

WP(S,Q) = WP(S',Q) holds in M.

Proof: Let M = <D,I>, Assume that S M S'. By theorem 4.3 we have that
Wp(intM(S,V), q) = wp(intM(S',V),q) for any q € ED(W).

Because intM(Q,W) € ED(W), we therefore get that
Wp(inty(S,V),inty(Q,1)) = wp(inty(S',V),inty(Q,W)),

and using theorem 5.2, we thus have that

WP(S,Q) = WP(S',Q) holds in M. @

COROLLARY 6.8 Let S and S', V and W and Q be as in theorem 5.7, and let A
be a set of sentences of L. If A F S < S', then

b WP(S,Q) = WP(S',Q).
Proof: Directly by theorem 5.7. o

COROLLARY 5.9 Let S and S', V and W and Q be as in theorem 5.7, and let A
be a countable set of sentences of L. If A+ S < S', then

A= WP(S,Q) = WP(S',Q).
Proof: Follows from corollary 5.8, by the completeness of Lwlw and cor. 5.5. O

Finally, we prove a simple induction rule for iteration that will be very

iseful later on.
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LEMMA 5.10 Let A be a countable set of sentences of L. Let V be a finite
nonempty set of variables. Let S and S' be legal descriptions from V to V,
and let B be a formula of L, var(B) < V. Then the following holds:

(i) If o F B*S)"<S'" forn<w, then A F (B*S) <S'.

(ii) & + B* )P < (B*S), for any n < w.

Proof: (1) Assume that
A - (B* S)n_i S' for any n < w.

Let L' be an expansion of L with a new predicate symbol G with k places,
where k is the number of variables in V, and let v be a list of distinct

variables, Vv = V. The assumption then implies that
A - WP((B * $)",6(v)) = WP(S',G(v)), for n < w .

Using the inference rule for infinite disjunction, lemma 2.4, this gives us
that

Ay WP((B * SV, G(v)) = WP(S',G(V)), i.e.

A - WP(B * S,G(v)) = WP(S',G(v)),
by the definition of WP, thus giving

Al- (B*S)<S',

as required.

(ii) Let L', G and v be as above. We have by the axiom for
infinite disjunction, lemma 2.5, that

Ak WP((B * $)",6(v)) = .y WP((B * $)',6(v)), for any n < w .
Thus we have that

A F WP((B * S)",G(v)) = WP(B * S,G(v)), forany n < w ,
giving the required result

AF (B* S)n_i (B*S), foranyn<w . O
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5.3 Basic properties of weakest preconditions

Dijkstral76] gives five basic properties of weakest preconditions for
guarded commands. If we let S:V > W be alegal description, and let w be a
list of distinct variables, w = W, then the corresponding properties for
descriptions would be the following (var(Q), var(Q') < W):

(1) WP(S, false) « false

(2) w(Q= Q') = (WP(5,Q) = WP(S5,Q"))

(3) WP(S,Q A Q") « WP(S,Q) A WP(S,Q")

(4) WP(S,Q) v WP(S',Q) = WP(S,Q v Q') and

(5) If Q.1 = Qi+1 for i =0,1,..., where QO’Ql"" are formulas
of L, var(Qi) c W for i<w, then

WP(S, v Q) = v WP(S, Q) .
1< 1<w

The first four of these properties will hold for any descriptions S, while
property (5) will only hold for descriptions S when their nondeterminacy is
bounded. This means that the interpretation of S in the structure M = <D,I> must
satisfy the condition: for any s € VD, either intM(S,V)(s) is a finite set, or
then intM(S,V)(s) contains the undefined state 1L . The counterexample that

is used in Dijkstral76] for showing that (5) does not necessarily hold when

the nondeterminacy is not bound can be used also for showing that property (65)
does not necessarily hold for descriptions (the counterexample used by Dijkstra
can be expressed as a description but not as aguarded command).

Before giving the appropriate generalisations of the first four properties, we
need to make a preliminary definition (used only for property (Z)). Let S be a
legal description from V to W. We say that the variable z is censtant in S 1if
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z belongs to both V and W, and in addition:
(i) if S is axBy.Q, then z does not belong to X, and

(ii) 1if S is either (§';S"), (S'vS"), (B -» S'IS") or (B * S'),

then z is constant in S' and S'".

LEMMA 6.11 Let S:V ~ W be a legal description. Let Qn be formulas of L,
var(Qn) c W, for n < w . Further,let x be a list of distinct variables, such

that any variable in W - X 1s constant in S. Then
(i) WP(S,false) « false,
(i1) vx(Qy = Q) = (WP(S,Q,) = WP(S,Q;)),

(1i1) WP(S, - C%) e A WP(S, Qn), a < w
n<ga n<qo

1

(iv) v WP(S, Q) = WP(S, v Q), &<u
n<g n<a

hold in any structure M of L.

Proof: The proofs of all these cases are quite similar and are all based on
theorem 5.2. We will prove case (ii) as an example.

Let M = <D,I> , and let f = intM(S,V) € FD(V;W). It is straightforward to prove
by induction on the structure of S, that if the variable z is constant in S,
then the following holds: for any proper states s € VD and s' € WD’ if
intM(S,V)(s) 3 s', then s(z) = s'(z).

Now choose a proper state s € Vy such that

D
(1) ValM(VX(QO = Ql),s) = tt and
(2) valM(WP(S,QO),S) = tt.

By theorem 5.2, we get from (2) that

wp (£, intM(QO’W))(S) = tt.



45

Thus for any s' € f(s), we have that intM(QO,W)(53 = tt, i.e. valM(QO,sD = tt.
By assumption (1), ValM(QO, s<d/x>) = tt implies ValM(Ql, s<d/x>) = tt for
any list d of elements in D, 2(d) = 2(x). Because Var(QO) < Wand s(z) = s'(z)
for z € W - X, we have that ValM(QO,s') = ValM(QO, s<s'(x)/x>) = tt, giving
ValM(Ql, s<s'(x)/x>) = tt, and thus that ValM(Ql,s') = tt. From this we

then conclude that wp(f,intM(Ql,W))(s) = tt, as s' was arbitrarily chosen,
and using theorem 5.2. again, we then have that ValM(WP(S,Ql),s) = tt, which

proves this case. o

Note that formulas (i) - (iv) will be provable from any countable set A of
sentences of L, as a consequence of lemma 5.11 and the completeness of Lwlw.
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5.4 Replacements in descriptions

We will here show that the refinement relation has a replacement property
needed for top-down development of programs. The property in question is that
replacing a subdescription of a description with a refinement will result in a
refinement of the description as a whole. Top-down program development will be
further discussed in the next chapter.

First let Sl and Si be legal descriptions from Vl to VZ’ and let S2 and Sé

be legal descriptions from v, to V3, where Vl’ V, and V. are finite nonempty

3
sets of variables. Let A be countable, and assume that

A - S :_Si and (5.6)
Al- S <S5 (5.7)
Let G be a new predicate letter of k places, and let L' be the expansion of
L that we get by adding G to the nonlogical symbols of L. The number of

variables in V3 is assumed to be k. Let v be a 1list of distinct variables,

v = V.. From (5.7) we get that

3
A WP(S,,G(v)) = WP(S),G(¥)).

Using the inference rule GN in Lwjw (subchapter 2.3), we then get that

A - Vv'(WP(SZ,G(V)) = WP(S,,G(v))),

~

where.v' is a list of distinct variables, V' = V,. By the lemma 5.1, v'
contains each variable free in the formula quantified. We may therefore use

lemma 5.11(ii), which gives us
A - MP(SI, WP(SZ,G(V))) = WP(Sl,WP(S',G(V))) .

On the other hand, using corollary 5.9, noting that A is also a set of
sentences in L', and the assumption (5.6), we get

A - WP(SI,WP(Sé,G(V))) = WP(Si,WP(Sé,G(V))).
Combining these last two results, we have

A I_ WP(Sl, WP(SZ,G(V))) QWP(S‘, WP(Sé)G(V))), i'e'
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_ . 1.Q!
&k (535,) < (S138))

which is the result we sought.

In a similar way we rrove that

AF S, <S]  and AF S, <SS

1295 2
implies
L= (S1 v 52).i (Si v Sé) and

~ - - S! !
bk (B=S 1S, < (B~S] ISy,

1

The analoguous result for iteration is derived as follows. Let V be a
finite nonempty set of variables, and let S and S' be legal descriptions
from V to V. Let B be a formula of L, var(B) < V. Assume that

bk S<S.
We first show that
Ak @B*9)" < B*sH? ‘ (5.8)

holds for any n < w. For n = 0 the situation is clear, as both descriptions
are identical in this case ( = abort). Assume that (5.8) holds for n, n < w.

By the previous result, we will then have that
A S;(B* )T < sy * s,

using the assumption and the induction hypothesis. This then gives
A= (B-S;(B*S)" | skip) < (B~ S";(B * s | skip),

i.e. we get that

n+l n+l

sk ®*s)™M < (B* ST

holds. This shows that (5.8) holds for every n < w.

We now first apply lemma 5.10(ii) to get

A (B* S')n_i (B*S') for any n < w.
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Combining this with (5.8), and using the fact that refinement is transitive,

we get
Al (B*S)! < (B*S'), for any n < w.
We can now use lemma 5.10(i) to get from this that
A (B*S)<(B*S'),

which is the required result.

We summarise these results in the following theorem.

THEOREM 5.12 (Replacement) Let S:V - W be a legal description, containing the
subdescription T:V' > W', Let T':V' - W' be a legal description, and let
S':V - W be the description that results from S, when T in S is replaced with T'.

For any countable set A of sentences, we then have that

A F T<T' 1implies AF S <S'.

Proof: The result follows by induction on the structure of S, using the

results proved above.o
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6. STEPWISE REFINEMENT USING DESCRIPTIONS

In this chapter we want to show how to use descriptions in program
development by stepwise refinement. We start by giving an example of the
informal use of the technique in section 6.1. This example is taken from
Dijkstra[76], with some small changes.

In section 6.2 we then outline the way in which the informal technique of
stepwise refinement can be turned into a formal one, based on the use of
descriptions. Having a formal development of a program makes it possible to

use the proof rule for refinemeht to establish the correctness of the refinement
steps. This in turn will give us a formal proof of the correctness of the final
program. In this section we will show how to achieve top-down development and
operational and representational abstraction and how to justify the use of

program transformations when developing a program using descriptions.

In section 6.3 we will introduce a restricted form of descriptions called
program descriptions, which are better suited for program development. We
will compute the weakest preconditions for the program descriptions using

the rules for computing weakest preconditions for descriptions. Programs will
finally be special kinds cf program descriptions, and will in effect be the
guarded commands of Dijkstral[76].
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6.1 An example of the use of stepwise refinement

To make things more concrete, and to show the kinds of refinement steps
possible, we will first give an example of program construction using stepwise
refinement. The example is taken from Dijkstra[76] , pp 65 - 67. We follow
Dijkstra's treatment quite closely, but will carry the refinement process

one step further in order to include an important kind of refinement step

not used by Dijkstra in this example. We will later use this example 2gain to

show how our formalisation of stepwise refinement works in practice.

The problem considered by Dijkstra is the following: let X and
Y be integers, X > 1 and Y > 0. We are to construct a program that will
establish the condition

R: z = XY,

without using the exponentiation operation in our program. Here z is an

integer variable.

The first refinement made by Dijkstra makes use of an ''abstract' variable h.
The condition

P: hez = XY Ah>1

will be kept invariant in the loop of the following program:

h,z:= XY,l; {P has been established}
do h #1 - squeeze h under invariance of P od
{R has been established}

Slz

Here h,z:= XY,l is a simultaneous assignment statement, i.e. h is assigned
the value XY and z is assigned the value 1 simultaneously. The

do h#1 - ... od construction is a loop; the statement ... is repeated
as long as the condition h # 1 is true. The statement "'squeeze h under
invariance of P'" specifies what remains to be done; we have to give a piece

of program meeting this specification, i.e. that will decrease the value of
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the variable h in such a way that condition P remains true.

We have to check that this solution is correct, i.e. that S, really does

establish the condition R. If the loop terminates, then P mist hold, and

as the loop only can terminate when h =‘1, this means that R must hold

upon termination (because P A h=1 = R). To show that the loop really does
terminate, we note that h > 1 holds initially, and will also hold after

each iteration of the loop. On the other hand, as each iteration will decrease
the value of h, the situation h=1 must sooner or later occur, terminating the

loop.

In the next step, the exponentiation operation is removed. Dijkstra
introduces two new variables x and y, which are used to represent the value
of h by the condition

h = x7.

In stead of manipulating the variable h directly, the program will manipulate
the variables x and y that represent the value of h. Observing that when

h=x and x > 1, we have
h#1 iff y #0,
we get the next refinement:

S,: X,y,z:= X,Y,1; {P has been established}
doy # 0> y,z:= y-1,z-x {P has not been destroyed} od
{R has been established} .

Essential use has here been made of the fact that P always holds prior to
the execution of the statement in the loop. Finally, Dijkstra observes that
the statement

do 2]}’ > X,y:= X*X,y/2 _O_C_l_

will not change the value L. represented by the variables x and y, and may

therefore be inserted before the statement y,z:= y-1,z-x, without affecting
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the correctness of the program (2|y tests whether y is divisible by 2).

This gives the refinement

SS: X,y,z:= X,Y,1,
doy # 0> do 2|y » x,y:= x*X,y/2 od;
y.2:= y-1,2+x

od,

which gives a considerable speed up of the program, as compared to SZ'

We will make an additional refinement of this, by noting that after each
execution of the statement in the inner loop, the condition y # € must

held, if it was true cn entry to the imner lcep. Therefore the two nested

loops may be fused into one, giving the last refinement

54: X,y,2:= X,Y,1;
doy # 0 = if 2|y » x,y:= x+X,y/2
| ~2|y » y,z:sy-1,zx fi
od.
Here if ... fi 1is a conditional statement, selecting to execute the

statement for which the test is true. This last refinement is simpler in
that it only contains a single loop, as compared to S3 , which contains twc
nested loops. It is, however, less efficient than Sz, because in some situations

the test y # 0 is performed unnecessarily.

As can be seen from the example, stepwise refinement combines two different
principles of program development: top-down development and optimizing
transformations. Top-down  development of programs proceeds

by implementing specifications, 1.e. giving algorithms that meet stated criteria.
This is the case in the example for the first refinement S, which is required

to satisfy the specification given, i.e. to establish the condition R. As another
example, the statement ''y,z:= y-1,z-x" is required to satisfy the specification
"squeeze h under invariance of P'", given the representation of h by x and vy,

and the fact that P holds prior to this specification in Sl'



The refinement of S1 to S2 is an example of the use of representational
abstraction, i.e. the data structure (the variable h) used in S1 is an
abstraction of the data structure (the variables x and y) used in S, The
refinement of S, to 83 exploits the fact that this representation of h by
x and y is not unique. Finally the refinement of 83 to §; can be seen as an
application of a special program transformation rule (as noted above

this is not strictly speaking an optimising transformation).

The application of both top-down development and optimising transformations

makes stepwise refinement very flexible as a programming technique. The

top-down approach allows a programmer to move from a higher to a lower level of
abstraction in constructing the program, and to concentrate on only a part of the
program when making a refinement step. Optimising transformations are again
useful in removing inefficienciles introduced by the top-down approach when

the interaction between different program parts was not considered.
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6.2 Correct refinements using descriptions

In this section we will discuss principles for developing programs so that
the correctness of the final program can be formally proved. We will try to
stay as close as possible to the informal technique for program development
exhibited in the preceeding section, while still staying in the framework

of refinement between descriptions developed in the preceding chapter.

1. TOP-DOWN DEVELOPMENT. The fact that the transitivity of refinement
justifies a stepwise construction of the final program was noted already in
the introduction. Thus, if we have the development sequence

Sqy S S

0 Sn—l’ n

0 -1°
where Sy is the initial specification and S/ is the final program, and if

each refinement step in this sequence is correct, i.e. if

S; 2541

holds for i = 0,1, ..., n-1, then transitivity gives us that

Sy 2 Sy

i.e. S, satisfies specification SO'

Stepwise refinement is, however, more than this. It also makes use of the idea
of top-down development, i.e. the idea that one can concentrate on a subcomponent
of the program, refining this independently from the rest of the program and

then finally replace the subcomponent with its refinement.

The fact that this is allowed with descriptions too is given by theorem 5.12.
Let S be a description with an occurrence of the subdescription T, i.e.

S=...T...
and assume that we have a refinement T' of T, i.e.

T < T'.
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Let S' be the description S with T replaced by T', i.e.
S'=... T ...

By theorem 5.12, this means that
s < s',

i.e. the replacement of T with T' in S is correct.

2. THE ASSIGNMENT STATEMENT. The assignment statement is usually chosen as the
basic construct in programming languages. Although the language of descriptions
does not contain assignment statements, the effect of an assignment statement
is, however, easily achieved. Consider e.g. the assignment statement

x:= xty.
The same effect can be acliieved with the description

a<zZ>p<>, Z = Xty,

a<x>B<z>, X = Z ’

where z is a new variable, not occuring in the context where the assignment
statement is used. Multiple assignments can be handled in the same way, as
shown in the next section. A partial assignment statement such as

X :=Xx/y
would again be expressed by the description

a<z>B<>, z = x/y Ay # 0

a<x>B<z>, X =z .

This description will not terminate when y = 0 initially, i.e. we use non-

termination as an indication of an error in a description.

Note that it would not have been correct to express the first assignment

statement as
a<x>B<>, x = Xty,

because this would have the effect of setting x to some value satisfying the

equation x = x+y. For y # 0 this equation has no solution x, while for y = 0
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any value of x would do. Thus we here have an example of a perfectly acceptable
description, which is both partial and nondeterministic, and where the non-

determinism is in fact unbounded.

In the next section we will show that not only the assignment statement but aiso
the if ... fi and the do ... od constructions are expressible using descriptions,

i.e. the programs of the previous section can be expressed as descriptions.

3. REPLACEMENTS IN CONTEXT. The top-down property of descriptions guarantees
that certain kinds of replacements are always allowed. There are, however,
replacements that lead to refinements of the original description, but which
cannot be justified by the top-down property alone. Consider the following
example. Let S be the description

S= (x>0->x:=lxl +1 ] x:=x*x),.

We want to replace the assignment statement °'

x := |x| + 1' with the simpler
statement 'x := x + 1'. This replacement is obviously correct, because the
first assignment statement will only be executed when x > 0, in which case

the assignment statement 'x := x + 1' has the same effect. However,

x:= |x| +1 < x=x+ 1

does not hold, because for x < 0 they give different results. What we have here
is a replacement that is correct in the context that it occurs, but which is

not generally correct, i.e. it is not correct in every context.

To handle this kind of replacement, we use a special class of descriptions

called assertions. An assertion {R} denotes the description
a<>B<>, R,

where R is some formula. It acts as a partial skip statement, i.e. if the
initial state satisfies R, then the assertion has no effect, but if the
initial state does not satisfy R, it acts as an abort statement, i.e. the

statement will not terminate.
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Returning to the example, what we can prove is that 'x := x + 1' is a
refinement of 'x := [x[ + 1' for initial states satisfying x > 0, i.e.

we can prove that
{x>0}; x:=IxI +1 < x:=x+1
holds. Therefore we should first prove that
S < (x>0 {x>0}; xt=lx| +1 | x = x*x)
holds, and then use the replacement theorem 5.12 to get that
(x>0 - {x> 0};x:=IxI+1 | x:=x*x)
< (x> 0 - xi=x+1 | x:=x*x).
Transitivity then gives the required result, 1i.e.

S < (x>0 - x:=x+1 | x:=x*x).

The general situation is as follows. We have a description S with an

occurrence of the description T in it, i.e.
S=...T...

We want to replace T with T'. If T < T' holds, this can be done immediately

by theorem 5.12. Otherwise we try to find an assertion {R} such that
S < §',
where
S'= ... {R} T ...
If we then can prove that
{Rb; T < T,
we have by theorem 5.12 that
s' < s,

where

S'= ... T
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Transitivity then gives the desired result, i.e.

S < §'".

Thinking operationally,
S=...T... < ...{RET... =8

states that formula R will be invariantly true at the indicated place of

the description when the execution starts in an initial state for which

S is guaranteed to terminate. To see this it is enough to notice that if this
was not true, then for some initial state for which S was guaranteed tc terminate,
it would be possible for S' not to terminate. This would then contradict the

assumption that S < S' holds.

4. PROGRAM TRANSFORMATION RULES. A program transformation rule will in
general give for cach description £ of a certain form a transformed description
1(S). If certain assumptions about S are satisfied,. then the transformation

will be correct, 1i.e.
S < 1(Ss)

will hold.

In the previous example, we could have used the program transformation rule
{R}; (B ~» S l S,) < (B~ {Ra B}S | {R A ~B};S,)

to justify the introduction of the assertion {x >0} into the program.

Another simple program transformation is

RE;(B-S; | S) < s,

which holds if R = B.
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Program transformation rules correspond to derived rules of inference in

the logic Lw The correctness of a program transformation rule

lw.
2
S <1(8)

where ® is the set of assumptions made, can be shown by deriving S < 1(S)

in Lwlw from the assumptions & . In chapter 7 program transformation

rules of this kind will be treated extensively and their correctness

shown in the manner suggested. These program transformations will be concerned
with the introduction of assertions into descriptions (section 7.3), the use

of representational abstraction (section 7.4) and changing the control structure

in a description (section 7.5).

5. OPERATIONAL ABSTRACTION. The way in which the assignment statement was
expressed using a description can be generalised to a nondeterministic

assignment. An example of a nondeterministic assignment is
2
set<x>, |x” - x'| <e.

The intended effect of this is that the variable x is assigned some new value
x' such that

lx2 - x'l <e

will hold, without changing the values of the other vatriables. Thus the effect
is roughly to perform the operation x := x“ with precision e. The operation

is both nondeterministic ( any value x' in the range xz-e < x'«< x2+e will do)
and partial (it is not defined for e < 0).

This nondeterministic assignment can be expressed by the description

a<zZ>R<>, |x2 -z| <e;

a<X>R<Z>, X = Z ,

where z as before is a new variable, not used in the context where the
nondeterministic assignment occurs.
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A procedure is usually specified by giving its entry and exit conditions. Thus

a procedure for squaring x with precision e would have the entry condition
e > 0,

and the exit condition

2

[x° - x'| < e
2

with x' as before denoting the new value of x, while x itself stands for
the initial value of x. In addition, we would like to state that only x may
be changed by the procedure (thus e.g forbidding the procedure from
changing e). The fact that the description S satisfies these entry and exit

conditions can be expressed by
2
{e > 0}; set-x>.Ix" - x'l <e < S . (6.1)

This states that S will compute the square of x with precision e for initial
states in which e > 0 holds.

Operational abstraction can be achieved by using the procedure specification
{e > 0}; set6x>.lx2 -x'l <e

as such in a certain stage of the program development. At a later stage an
implementation S satisfying this specification, i.e. satisfying (6.1) above,
can be given. Replacing the specification with S is then allowed by theorem 5.12.

This . scheme allows us to use parameterless procedures in program development,
without having to introduce names for these procedures. This of course makes

it impossible to use recursive procedures.

In section 7.2 of the next chapter we give special proof rules for proving the
correctness of procedure implementations, i.e. for proving refinements of

the type in (6.1). We will there also show that these special proof rules are
derivable from the general proof rule for refinement.
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6. REPRESENTATIONAL ABSTRACTION. An example of representational abstraction
was already provided in the preceding section, in the transition from program

S, to program S,. Another example is the following.

Consider a program S using a set V of variables. Let a be one of the variables
of S, taking only small sets ur integers as values during the execution of S
(small means here that the secs have at most 100 elements). We want to repre-
sent the variable a by the new variables b and k, where b is to be an integer

array with indices running fium 1 to 100 and k an integer in the range from
0 to 100.

In order to specify the way i1 which the variables b and k are to represent the
variable a, we first have to indicate those value combinations of b and k that

are meaningful, i.e. that represent some small set of integers. This is done by
giving a condition I that b and k must satisfy if they are to represent any-

thing. In this case we give the condition

I(b,k): b is an integer array[1..100] and
k is an integer in range 0..100 .

We also have to indicate what small set of integers b and k represent when
they satisfy the condition I(b,k). This is done by giving a function t, which
assigns to each value combination b and k the small set of integers represented
by b and k. In this case we give

tb,k) = {bli] | 1<i<k}.

Here the function t is the abstraction function and the condition I the
concrete invariant introduced in Hoare([72] as an aid to proving the correctness
of data representation. The example here is also taken from this reference,

although Hoare uses a stronger concrete invariant than the one given here.

We now have two different data spaces, the ''abstract' data space V in which the
variable a occurs, and the 'concrete'' data space W = (V - {a}) v {b,k} ,
in which a is replaced by the variables b and k. The transition from the
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concrete data space to the abstract data space can be given by a description
C:W - V, defined by

C = a<a>B<b,k>. a = t(b,k) A L(b,k).

This transition is defined when b and k satisfy the condition I, and it will
assign to the variable a the value represented by the variables b and k. On the
other hand, the transition from the abstract data space to the concrete data

space can be given by the description D:V - W, defined by
D = a<b,k>B<a>. a = t(b,k) A I(b,k).

This will assign to the variables b and k some values which represent the
value of a. It will be defined if a has a representation using b and k, i.e. if

the value of a is some small set of integers.

The descriptions C and D are each others inverses.Note that description C
is deterministic while description D is not. This means that there is more
than one way to represent a given small set using b and k, but that each b and
k satisfying the condition I will represent a unique small set.

Consider now the problem of finding a refinement of S ~where the variable
a 1s represented by the variable b and k. This can be expressed as follows:
find a description S':W -» W such that

{R}; S < D; s'; C (6.2)

holds. Here R is a condition that guarantees that a has a value that can be
represented by b and k. In this case we would have

R(a): a is a small set of integers.

The assertion {R} is necessary to restrict the refinement to those initial
states for which D is defined. It is possible that S could also be defined fcr
initial-states that do not satisfy R (e.g. S could be defined for any sets of
integers, and not only for small sets).
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The refinement (6.2) can be operationally interpreted as follews: for initial
states satisfying R, the effect of S can be achieved by first finding some
representation of a using b and k, then wusing S' to get a final state by
manipulating the variables b and k, and then setting a to the value represented
by the final values of b and k.

An S' satisfying (6.2) can now be constructed by the following recursive
procedure. We may always simply invent an S' satisfying (6.2), and then
the problem is solved. If, however, S is of the form (81;82), (S1 v Sz),
B - 4 | SZ) or (B * Sl), where 1,5,V = V, there is another possibility
open. Consider as an example the case

S = 513S,.
As a first step we prove that

{R};S < {R};Sl;{R};S2
using some transformation rules for introducing the assertions. Then we
solve the subproblem of finding Si and S; that satisfy

{R};S1 < D; S81;C and

{R};82 < D; S C.
Using the replacement property (theorem 5.12), we then have that

{R};S {R};Sz < (D;S];0);(D;S550).

1° 23
Finally, it can be shown that the transformation rule
(D3575C) 3 (D3S53C) < D;5(87355)5C (6.3)
is always correct, provided C and D satisfy certain properties (which they do
in this example). Transitivity of refinement then gives us the desired result,i.e

{R};S < D;s';C,

where
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The other cases can be treated in a similar way. Transformation rules of the

form (0.3) will be the subject of section 7.4 in the next chapter.

An important special case occurs when the program S uses the variable a as
a "'temporary' variable, i1.e. S will initialise the variable a to some value, and
it does not depend on the initial value of a. In this case we introduce the

description DO:V’a W, defined by
Dy = a<b,k>B<a>. true.
This description will assign arbitrary values to b and k. The requirement

to be put on S":W - W is now that
S £ Dy; S'; C

holds. The restriction R can be dropped here because Dy is always defined.

An S' can be found by the same technique as above. If we assume that S = 513555

we first prove that
S £ S;; {R}; S, .
1

Then we solve the problems of finding Sy and S; satisfying

S, < D.; S!'; C and

1 - 7071

{R};S2 < Dy sy C
By replacement we again get that

Sy R} s, < (Dy; S35 O (D5 Sy ).
Finally we use a program transformation rule that gives

(Dgs S5 O35 (D3 S35 O < Dy (845 S7)5 C .
By transitivity, we then have the desired result, i.e.

S < Dp; S'5 Gy
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If the final value of a does not matter either, i.e. any final value of a is
allowed, then we can also introduce the description CO:W - V, defined by

CO = qa<a>B<b,k>. true ,

and consider the problem of finding a description S':W » W satisfying

S < DO; S, CO,

which can again be solved by the same technique.

The approach to stepwise refinement presented above is new, as far as we know.
Related ideas have, however, been presented before. Thus Katz & Manna[70]
contains a similar technique of using assertions to collect information about
the context of a program part. The nondeterministic assignment has been used
previously by larel & al[77] in the extension they give of Hoare'a axiomatic
system. The formalisation of representational abstraction given here is clearly
inspired by the abstract data type facility first discussed in lloare[72a], and
provided in a number of new programming languages (see e.g. Wulf & al[77],
Wirth[77], Lampson & al[77] and Liskov & al[77]). Representational abstraction
is, however, a more general (and less structured) concept than the abstract data
types, permitting e.g. two or more abstract variables to share the same concrete
variables for representation. The way in which representational abstraction is
handled here is somewhat similar to the handling of abstraction in Burstall &

Darlington[75] or the concept of simulation between programs defined in Milner[71]
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6.3 Program descriptions

In this section a special kind of descriptions called program descriptions
will be defined. Program development along the lines discussed in the previous
section is intended to be carried out using only this kind of descriptions.

A special notation is introduced for the program descriptions, to make their
use more convienient. Programs and program specifications will again be

special kinds of program descriptions.

Because the program descriptions, programs and program specifications all are
special kinds of descriptions, it is possible to compute the weakest precon-
ditions for these constructs using the rules for computing the weakest precon-
ditions for descriptions. We will do this below, at the same time as we

define the set of program descriptions.

We define the set Vr of program variables by
vr = {v, | n = 2k for some k < w}
The set of marked variables Vr' is defined by
vrt = v, | n = 2k+1 for some k < w}.

For each variable Vi in Vr, vﬁ denotes the corresponding marked variable
V41 in Vr'. For any set U (list x) of program variables, U' (x') is the

set (list) of corresponding marked variables.

Let V be a finite nonempty set of program variables. The program descriptions
in V form a subset of the legal descriptions from V to V. We define them below,
at the same time giving a notation for them.



1. ASSERTIONS. Let Q be a formula of L, var(Q) = V. Then the assertion

{Qr = Jf a<>B<>.Q

is a program description in V. As special cases of assertions we have the

skip statement

skip = ¢ {true}
and abort statement

abort = af {false} .

The skip and the abort statement have here the same meaning as they have in

Dijkstral[76].

The weakest preconditions for these constructs are as follows:
WP({Q}, R) = QA R,
WP (skip, R) © R,

WP (abort, R) < false.

This follows directly by computation. We have

]

WP({Q}, R) WP (a<>B<>.Q, R)
= QA Q=R
& QAR
We then have that
WP(skip, R) ® true AR < R and

WP (abort,R) & falseAR & false.

The effect of the assertion was already explained in the previous section.
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2. ASSIGNMENTS. Let Q be a formula of L, and let x be a list of distinct

~

variables in V, where var(Q) < V U X. Then the (nondeterministic) assignment
set x.Q = df ax'B<>.Q; axBx'.x=x"

is a program description in V. A special case of the assignment is the

assignment statement
« = = ' =
X =t af set X. X t,

where X is a list of distinct variables of V and t is a list of terms of L,
L(x) = 2(t) and Var(ti) cVifori=1,...,8(t). The angular brackets will
usually be omitted in connection with the assignment statement,in examples,
l.e. we will write Xl""’xﬂ(x) 1= tl""’tg(t) is stead of the more

correcCt <Xl""’X2(x)> i= <t1""’t2(t)> .

The effect of the assignment is to assign new values to the variables in the

list x, so that condition Q will be true. In Q the marked variables x' stand

for the new values assigned to the variables x, while the program variables

x stand for the old values. No other variable is affected by the execution of the

the assignment.

The weakest precondition for the assignment and the assignment statement
will be

WP(set x.Q, R) @ 3x'Q A vx'(Q= K[x"/x]) and

WP(x :=t, R} & R[t/x].

For the assignment, the weakest precondition is computed as follows:
WP(set x.Q, R) = WP(ax'8<>.Q, WP(axBx'.x=x", R)).
We have
WP (oxBx'.x=x', R) = 3Ix(x=x"') A vx(x=x' = R)
= true A R[x'/x] (by lemma 2.6)

= R[x'/x].
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Thus
WP(set x.Q, R) « WP(ax'8<>.Q, R[x'/x])

& 3x'Q A VX'(Q = R[x'/x]).

For the assignment statement we have
WP(x :=t, R) = WP(set x. x' = t, R)
o 3IxX'(x' =t) AVx'(x' =t = R[x'"/Xx])
o true A R[t/x]

e R[t/x].

3. ABSTRACTION. Let axBy.Q be an atomic¢ description.from V to W, where
XNV=¢g Let Qbe the formula y=t A I where t is a list of terms in L
and I is a formula of L, Var(ti) c Wifori=1,...,0(t) , var(l) « Wand

2(t) = 2(y). Let S be a program description in W. Then the abstractions

rep oaxBy.Q: S per = af aXBy.Q;S;ayRx.Q,

I

rep oxBy.Q: S end af aXBy.Q;S;0yRx. true
beg axgy.Q: S per = df aXBy.true;S;ayBx.Q and
beg axBy: S end = af aXBy.true;S;ayRx.true.

are program descriptions in V.

The weakest preconditions for these constructions are:
WP (rep axBy.Q: S per, K)
© IX(y=tAl) A

vx( y=t A I = WP(S, I A R[tHy 1)),

WP(rep oxBy.Q: S end, R)
e Ax(y=t A 1) A

vx(y=t A I = WP(S, WVyR)),
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WP (beg oxBy.Q: S per, R) = WxiP(S, I A R[t/y]), and
WP(beg axBy: S end, R) = VxWP(S, VyR).

The computation of these weakest preconditions goes as feollows. We compute

first

WP (ayBx.y=t A I,K) Jy(y=t A I) A Vy(y=t A I = R).
We have by lemma 2.6 that
3y(y=t A I) @ I[t/y] e I,
because y is not free in I. On the other hand, by axiom Q1 and lemma 2.6,
vy(y=t A I = R) ® vy(I= (y=t =R)) & I=vy(y=t =R)
« I =R[t/y]l,

for the same reason. Thus we get that

WP (ayBx.y=t A I, R)® I A (I = R[t/y]l) @I A R[t/y].

We also get that

WP (ayBx.true, R) = 3y(true) A Vy(true = R) ¢ VyR.

Thus the result will follow by computing
WP (rep axBy.y=t A I: S per, R)
© WP(axBy.y=t A I, WP(S, I A RI[t/y])),
WP (rep axBy.y=t A I: S end, R)
&  WP(axBy.y=t A I, WP(S, VyR)) and
WP (beg axBy.y=t A I: S per, R)
©  WP(axPy.true, WP(S, I A R[t/y]))
WP (beg axBy: S end, R)

<  WP(oxBy.true, WP(S, vyR)).
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The purpose of an abstraction is to allow a change of state space to take
place temporarily. The abstraction

rep axBy.y=t A I: S per
will achieve this change by replacing the variables y in V with new
variables x that represent the values of the variables in y by the
equation

Yi Tt fori =1, ...2(y).

Here t; are terms whose values depend on the variables in x and possibly
on some other variables in W. There may be more than one choice of values
for the variables in x that will represent the values of the variables in y.

The values chosen for x must, however, satisfy the condition I.

After the variables in y have been replaced with the variables in x, the
description S is executed and the variables in y are then assigned

the values represented by the new values camputed by S for x (and for

the other variables in W). All in all, the effect of the abstraction is
to manipulate the variables in y by manipulating a representation of these

variables.

The abstraction

beg axBy.y=t A I: S per

is used to initialise the values of the variables in y by initialising the

values of the variables in x used to represent the variables in y. The

abstraction
rep axBy.y=t A I: S end

is again used in cases where the representation of y by x may be destroyed.

The last abstraction
beg axBy: S end

is used for introducing new temporary variables at the same time as some other
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variables are deleted. The deleted variables will, however, not get their
old values after this description has been performed, but will be assigned

some arbitrary values. A special case of this last abstraction is the block
beg x: Send = 4 beg axB<>: S end,

where x must be a list of program variables not appearing in V and S is a

program description in V U X. The weakest precondition for the block will be
WP(beg x: S end, R) = VxWP(S,R),

which is easily verified by noting that VyR 1is by definition R when y = <>.

4. COMPOSITION We have composition for program descriptions in the same way
as for descriptions. Parenthesis may be dropped, by agreing that

Sl;Sz;...;Sn_l;Sn stands for (Sl;(Sz;(...;(Sn_l;Sn)...)).

5. NONDETERMINISTIC SELECTION Let Sl’ ...,Sn be program descriptions in V, and
let Bl"'

The nondeterministic selection

.,Bn be formulas of L, such that var(Bi) cVfori=1,...,n, n>1.

if By >S5S, J...1 B = S, fi

is then a progr=m description in V. It is defined as follows:
ﬁBl_’Slﬂ = (Bl—>Sl | abort),
if B »S; | B, >S, fi

(Bl A ~B2 - Sl |

(Bz A ~Bl - Szl if By A B, » Sl v S, fi)).
if B, - Sy le..l By » 5 fi
= if B, » 5
I By v...v Bn - if B, - S2 ool B, - Sn fi
fi

for n > 2.



73

A reasonable amount of computation will show that the weakest precondition
for the nondeterministic selection is

WP(EBl_’S l...an—»Sn:f_i_, R)

1

= v Bi A A (Bi =>WP(Si, R)) .
liiin lﬁiﬁn

6. NONDETERMINISTIC ITERATION  Let Sl""’Sn be program descriptions in V, and
let Bl"“’Bn be formulas of L, such that var(Bi) cVifori-=1,...,n,n>1,
Then the nondeterministic iteration

do By » Sql ... IB_ > S od

=af (Bl VooV Bn*giB1 -S| .. | Bn—bsnf_l_)

1
is a program description in V.

The weakest precondition for nondetemministic iteration is

WP(do By » S, I...| B =S od, R)

v WP(d_oB1—>S
n<w

11
g le--l B »>S od', R)

where
n
do B1 - S1 [ onsl Bn - Sn gg

= ¢ (By V-..v B * if By > S| ... B - S fi)",

for n > 0.

Noting that
(B—»SllSz)m_i_fB >S5 | ~B -5, fi,

we find that
do B

0 _ 4
-»Sll... an_’Sngl- = abort and

1
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do By »S | ... | B >S5 od
~ if BB - if B1 ﬂ‘Sl [ oo | Brl - Srl fi;
doBy =S | ... | B »8 od't
| ~BB - skip
fi, forn > 0,
where we denote with BB the condition B1 V oeeo v Bn'

The program descriptions are now the descriptions generated by the rules (1) to
(6) above. The programs are generated by these same rules, when restricted as
follows: in (1) we only allow the skip and abort statement, in (2) only the
assignment statement, in (3) only the block, (4) is unrestricted and in (5) and
(6) the formulas Bl""’Bn may not contain any quantifiers or infinite dis-
junctions or conjunctions.Thus the programs are the guarded commands of
Dijkstra[76], plus the block construction. The weakest preconditions for the
programs are also the same as those given by Dijkstra, except for the weakest
precondition for the nondeterministic iteration which, however, is equivalent

to the weakest precondition given by Dijkstra.

Program specifications will finally be special kinds of program descriptions.
A program specification giving the entry condition P and the exit condition Q
and allowing only the variables in x to be changed 1s expiessed as the

program description
{P}; set x.Q .

No special notation will be introduced for specifications.
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7. FORMAL DEVELOPMENT OF PROGRAMS

In this chapter we will show how programs can be formally derived using
program descriptions. The use of program descriptions makes a formal proof

of the correctness of the derivation possible. The general proof rule for
refinement can in principle be used for establishing the correctness of the
individual refinement steps in the derivation. In practice, however, this is
not very convenient and we need stronger proof rules for handling the different

kinds of refinement steps commonly occurring in program development.

In section 7.1 we will show how to derive the example program of section 6.1

i, a formal way using program descriptions. This derivation makes use of a
number of stronger proof rules by which the correctness of the refinement

steps done can be proved. These proof rules will be formulated in the succeeding
sections. Thus section 7.2 gives proof rules for proving the correctness of
procedure implementations. Section 7.3 will give examples of transformation

rules by which assertions can be introduced into descriptions. Section 7.4 will
again give transformation rules, by which abstractions can be removed from
descriptions. Finally, section 7.5 gives an example of a transformation rule,

by which the control structure of a program description can be changed.

The soundness of the stronger proof rules will be shown by deriving them from
the general proof rule for refinement. The derivations will essentially be
carried out in Lwlw, using the axioms and inference rules of this logic. One
of the main purposes of this chapter is in fact to illustrate the power of
the general proof rule for refinement and the suitability of Lwjw as a formal

system in which to reason about program properties.
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7.1 An example of formal program development

We will here show how the example of section 6.1 can be formally developed
using program descriptions and the principles of section 6.2.

The problem specification can be expressed as the program description

Ay if X>1AY>0 - z:= X fi: VoV,

0
where V = {X,Y,z}. Thus the problem is to construct a program description S
such that Ay < S. The solution S is constrained by requiring that the expo-
nentiation operation is not used. The variable sets (like V above) will be

omitted in the sequel.

We will introduce the abbreviation
Ri: X>1AY>0
for future convienience. Thus AO is

AO: iﬁ R1 - z:= XY'fi.

We will assume that the variables take only integers as values. This means that
we postulate some set A of sentences, which are taken as axioms and which
give the operations used in the program descriptions the properties expected of
the usual integer operations. In the sequel, this set A of axioms will not

be mentioned explicitly. However, S < S' in the sequel is to be understood as
stating that S < S' is a logical consequence of A, i.e. that S < S' holds in

any model of A.

As the first refinement step we introduce some assertions into A,. Let A1 be

. Y ..
A if Ry - {Rl}; z:= X fi.
The fact that Ao.i A1

introducing assertions (the rule is given in example 7.7(i), section 7.3).

holds is a consequence of a transformation rule for
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We now try to find a refinement S' of the specification
. R ¢
By: {Rl}, z:= X .
If we find such a refinement, i.e. an S' satisfying
By < S,
then the replacement theorem implies that
b = 2 HR

thus giving us the required solution.

> 8! ii_,

The following is a refinement of B,:

B;:

1 {Rl};

beg h:
h,z:= XY,l; {RZ} R
do h#1 - set<h,z. (h' <ha Ré);

{RZ}
od
end
We have here used the abbreviations
Ryt hez=X ah>1 and

Y

Ré: h'ez = X* A h'_z 1.

The assignment
set<h,z}. (h' < h A Ré)
has the effect described in section 6.1 as

"squeeze h under invariahce of P'.

The way to prove that By, < By holds is given in example 7.1, section 7.2.
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The invariant R, in B, is a byproduct we get when showing the correctness of
the implementation by the invariant technique, loosely described in section 6.1
and more thoroughly treated in Dijkstra[76]. They come very handy when

preparing for a replacement in context.

Our next step is to get rid of the abstract variable h using the variables
x and y to represent the value of h. This constituted the second step in
the example of section 6.1. It will, however, take us more than one refinement

step to make this passage.

We prepare for this step by collecting some neccessary information in the form of

assertions in the program description. This gives us the refinement B, of By:

B,: {Rl};
beg h:
{Rl}; h,z:= XY,l; {Rz};

doh#1 = {Ryah#1};
set<h,z2. (h' <ha Ré); {RZ}
od

end.

The fact that B < B, holds can be shown by using the appropriate transformation
rules for introducing assertions into program descriptions. We would need the

transformation rules of example 7.8 and 7.9(v) to get from B, to B,.

In the following, we will take a small shortcut in removing the representational
abstraction h, as compared to the method outlined in in section 6.2. Thus we
will not go through the recursive determination of the subproblems to be solved,
but assume that this step is already done, leaving us with a number of sub-
descriptions to be refined using abstractions. After giving these refinements,

we use the transformation rules of section 7.4 to puskh the abstraction outwards

until we can eliminate it completely.
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We will consider the following two components of B,:
Cp: 1R} hzz=X,1  and
Dy {R2 A h # 1}; set<h,z>. (h' < ha Ré).

The program description C, will be implemented with the description

C .

1’ beg a<x,y>p<h>.Q:

xX,y,2:= X,Y,1
Per,

where Q is

Q: h=x ax>1.

The effect of Cl is to initialise the variables h and z to XY and 1, as

required, by first computing appropriate values for x,y.,and z, and then assigning
to h the value represented by x and y. The form beg ... per 1is used here,
because the initial value of h is not needed to compute the final value required.

The way in which C, < C; is to be proved is discussed in example 7.2 of section 7.Z.

0 1

The program description D, will again be implemented with the description

D;: rep a<x,y>B<h>.Q:
y,z:= y=1,2°Xx

per .

Because the initial value of h is referred to in Dy, we use the form
rep ... per. The way in which Dy < D, is to be proved is discussed in
example 7.3 of section 7.2.

Because C, < C1 and Dy < Dy, we are allowed to replace Cy and Dy in B, with

2
¢y and Dy, giving as a result the program description B;, for which

B2 < B3 holds. We have
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beg a<x,y>B<h>.Q: x,y,z:= X,Y,1 per; {R,};
do h # 1 - rep a<x,y>8<h>.Q: y,z:= y-1,z°x per; {R,} od

end.

We now apply transformation rules for abstractions, by which the operation
of replacing the variable h with the variables x and y can be pushed outwards.

We first use lemma 7.9, to push the abstraction out of the loop. This gives

B4: {Rl};
beg h:
beg a<x,y>B<h>.Q: x,y,z:= X,Y,1 per;
rep a<x,y>B<h>.Q:
doy #0-vy,zi=y-1,zex od

per

end

Next we use lemma 7.7 for handling compound descriptions, giving

beg a<x,y>B<h>.Q:
X,y,2:= X,Y,1;
doy #0-y,z:=y-1,z°x od

per
end
Finally we use lemma 7.10 to get rid of the now obsolete variable h which

gives us
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6 (Ryh
beg x,y:
X,¥,2:= X,Y,1,;
doy #0 - y,z:=y-1,z.x od

end.

These transformation rules will be treated in section 7.4 below. As a result
of the above transformations we have Bs.i B4.i Bc f-Bé‘ Thus, all in all,
we have found a refinement By of B,. The component B, of A, can therefore
be replaced with Bg. This will then give us a solution to the programming
problem posed. The solution A, will correspond to step 82 in the example

by Dijkstra.

A,

7 iﬁ X>1AY> 06 =

beg x,y:
X,y,z:= X,Y,1,;
do y#0 - y,z:=y-1,zex od

end.

Moreover, we will have a formal proof of the correctness of A, i.e. of the
fact that Ay < A2, when we give formal proofs of the correctness of the

intermediate stages in the program development.

To get step S3 in the example by Dijkstra, we backtrack to the
program description B,, and give the refinement Bé of it instead of the
refinement B!
Bz: ARy}
beg h:
{Rl}; h,z:= XY,l;{RZ};
doh#1 - {R2 A h # 1}; skip;
{R2 A h#1};
set<h,za(th' < h A Ré);{RZ}
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It is quite obvious that Bg < Bé, as the skip statement does not affect
the values of any program variables, i.e. 1t does not do anything. We then

consider the components C, and DO of Bé,whichare the same as the components
Co and D, of Bz, and implement these as before with C; and D;- We will then

also consider the component

EO:

of Bs. This component will be implemented with the program description

{Ry n h # 1}; skip

Ei: Tep a<x,y>B<h>.Q:
do 2|y - x,y:=x-x,y/2 od
per.

The way in which Ej <E is proved is given in example 7.4 of section 7.2.

We then proceed as before, replacing in Bé the components C, Dy and Eg
with C,, D1
x and y outwards, until it finally becomes possible to eliminate it altogether.

and E1 respectively, and pushing the representation of h with

As a result of this, we get the program description
BA: beg x,y:
X,yY,z:= X,Y,1;
doy # 0> do 2]y - x,y:= x*x,y/2 od;
y,z:i= y-1l,z+Xx

od
end,
where Bé_i Bi. By replacing B, in A1 with Bi, we then get the program
description Aé witch corresponds to the step S3 by Dijkstra:
Aye A X>1AY>0 >

beg x,y:
X,y,z:= X,Y,1;
doy # 0~ do 2y~ x,yi= xox,y/2 od;
Y,2i= y=1,ZX
od
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We now subject our program to a last refinement. It does not make the program
more efficient, on the contrary, but it does make it simpler, by fusing the
two nested loops of the program into one single loop. This transformation is
not done by Dijkstra, for obvious reasons. We wish, however, to show here the
usability of transformations of the control structure of programs, to make

programs more efficient and/or easier to implement.

We consider the fcllowing component F, in Aé:

Fg: doy #0-do 2ly » x,y:= x*x,y/2 od;
y,2:= y-1, z2+X

od

Using a program transformation on loops, to be proved correct in example 7.10
of section 7.5, we get the refinement Fy of Fy:
Fi: doy# 0 - if 2]y = x,y:= xex,y/2
| 2]y = y,zi= y-l,20x i
od

The program description F will be less efficient than F, because the
condition y # 0 is tested at each iteration, whereas this test is not
performed in F, while iterating in the inner loop.

Replacing F, by Fl in Aé gives us the solution Aé to the programming
problem, where Ay is '
Az: ifX>1AY>0 -

3
beg X,y
X,y,z2:= X,Y,1;

do y#0 - if 2|y » x,y:= x-x,y/2
14
| ~2|y = y,z:= y-1,z-x fi

od
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7.2 Proof rules for implementation

We will here give a general proof rule by which the correctness of an

implementation, i.e. of a refinement of the form
{P}; set x.Qq < S

can be shown.For this purpose, we need to prove a technical lemma first.

LEMMA 7.1 For any set A of sentences, we have

A Fvx'(Q = R[x'/x]) (7.1)
iff A FVxgYy(x=x) A Y=Y, = vxy (Qlx,/x,x/x"] A Y=y, = R)), (7.2)
when var(Q) <« V U X' and var(R) < V, io and ?0 do not contain variables

of Vorxory, XNy =g and io Ny, =0 and § < V.

Proof: By lemma 2.6, (7.2) is equivalent to
(vxy (Qlxp/X,x/x'] A y=y, = R))[x/xo,y/yo] .

By changing the bound variables x and y, this gives us
(vx'y " (Qlxy/x,y'/y] A y'=yy = RIX'/x,y"/y] DIx/xq,y/yy]

thus making X and Yo free for x and y. Because Xq and Yo do not occur
free in R[x'/x,y'/y] and Yo does not occur free in Q[xo/x,y'/y] , per-
forming the substitution gives us the result

vx'y'(Qly'/yl A y'=y = RIx'/x,y"'/y]) .
This is again equivalent to

vx'y'(y=y' = (Qly'/yl = RIx'/x,y'/y1}),
giving the equivalent form

vx'(Q = R[x'/x]1),

by using lemma 2.6 again. This 1s the desired result, so the lemma is proved.
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The general proof rule for establishing the correctness of an implementation

is now given by the following theorem.

THEOREM 7.2 Let A Dbe a countable cet of sentences of L. Let V be a
finite nonempty set of program variables, and let {P};set x.Q and S be
program descriptions in V.Let y be a list of those variables in V - X that
are not constant in S. Let X and Yo be lists of distinct program
variables not occurring in S or belonging to V. If

A Pa X=Xy A Y=Y = WP (S, Q[XO/X,X/X'] A Y=Y, ),

then A - {P};set x.Q < S.

Proof: Let k be the number of variables in V, and let v be a list of
distinct variables, v = V. Let G be a new k-place predicate symbol. By

cor. 5.5, it is sufficient to show that
A - WP({P};set x.Q,G(v)) = WP(S,G(v)).

Take therefore WP({P};EEE x.Q, G(v)) as an assumption, i.e. we assume
that

PA3x'.Qavx'(Q= GVv)[x"/x]). (7.3)

Note that the assumption may contain free variables of V, over which we
are not allowed to quantify. By lemma 7.1, the third term in the

assumption implies that we have
VXY (x=x; A Y=y = Vxy (Qlxg/x,x/x"'] A y=y, = G(v))).
Using axiom 02, th*s gives us that
X=Xy A Y=Yy = ny(O[xo/x,x/x'] AYEY G(v)).
Let us now further-assume that
X=X A YY) (7.4)
By modus ponens we get that

vxy (Qfx./x,x/x'] A y=y, = C(v)).
0 0
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Because all variables of V not belongirg to x or y are constant in S, we

may apply lemma 5.11(ii), getting the result
WP (S, Q[XO/X,X/X'] A y=y0) = WP(S,G(v)).
Because of the assumptions and the premise, we have that
WP(S, Q[xo/x,x/x'] A y=y0),
and thus we may infer by modus ponens that
WP(S,G(v)).

We still have to get rid of the assumptions that we made in the course

of developing the proof. By the deduction theorem, we first get that
X=X A Y7 = WP(S,6(v)),

thus getting rid of assumption (7.4). As x, and Yo are not free in

assumption (7.3), we may use the rule GN to this, getting
VXOyO(x=xO A Y=Y = WP (S,G(v)),

which then gives us
WP(S,G(V))[X/XO,y/YO]

by lemma 2.6 1i.e.
WP(S,G(v)),

by noting that x, and y, are not free in WP(S,G(v)) (lemma 5.1). Using the
deduction theorem once again, we eliminate assumption (7.3), getting the

desired result

WP({P};set x.0, G(v)) = WP(S, G(v)). o

COROLLARY 7.3 Let the assumptions be as in the theorem 7.2. We ther
have that

- 3x'.Q A x=x43 A Y=Y, = WP(S, Q[XO/X,X/X'] A y=y0))

implies - set x.0 < S,
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Proof: By noting that set x.Q s {3x'.Q};set x.Q .o

COROLLARY 7.4 Let the assumption be as in theorem 7.2. Then for the assign-

ment statement x:= t in V, we have that.
- P A X=X, A Y=Y, = WP(S, x=t[x0/x] A y=y0)

implies - {Phx:i=t < S.
Proof: Immediate. o

We will now show how the implementation steps in section 7.1 can be proved

correct, using the proof rules for implementations.

EXAMPLE 7.1 The first implementation step was the refinement of By to Bl'
Thus we have to prove that By < By, where

{X>1AY>0};z:= x.

BO:
We apply here corollary 7.4. Using the notation of this corollary, we have
in this case that y = <>, because B, only affects the variable z. Also, the
assignment performed is an initialisation,i.e. the variable x does not
occur in t (here: the variable z does not occur in XY). In this case, the

premise in corollary 7.4 simplifies to
P = WP(S, x=t).

Thus we have to prove that
X>1AY>0=Up(B,z=X).

We will not prove this here. An informal argument was given in section 6.1.
A more formal proof can also be given, based on the ''fundamental invariance

theorem' in Dijkstral76].

EXAMPLE 7.2 The second implementation was the implementation of C0 with

Cl’ where

Y

Cht {X>1aAY>0}; hyz:=X',1 and
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Clz beg a<x,y>8<h>.(h=xy A X>1): x,y,z:= X,Y,1 per.
This is again an initialising assignment not affecting variables other
than those indicated, so we can use the same proof rule as in example 7.1.

Thus we have to prove that
X>1AY>0= WP(Cl, h=XY A z=1)

The weakest precondition for C, can be calculated using the formula

for weakest preconditions of abstraction in section 6.3. We have
WP(beg axRy.y=t A I: S per, R) @ VxWP(S, I a R[t/y]l).
Using it in the present example means that we have to prove that
X>1AY>0=vxyWP(x,y,z:= X,Y,1,(x > 1A xy=XY A z=1)).
Using the rule forycomputing the weakest precondition of an assignment
statement, also given in section 6.3, the premise to be proved becomes
X>1AY>0=>Wy(X>1a XY=XY A 1=1),

i.e., we have to prove that

X>1AY>0=X>1naX=X A1-1,

which obviously holds. Thus we conclude that Cy £ Cl'

EXAMPLE 7.3  The third implementation was the implementation of Dy
with Dl’ where

Dy {R; A h#1 }; set <h,z>.(h' < h A RY),
and

Dlz rep cx<x,y>8<h>.(h=xy A X>1): y,zi= y-1,2°X per
Here

RZ: hez = XY Ah>1 and

RY: h'ez' = XY Ah' >1
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We use the theorem 7.2 here. Because y = <> , the rremise in 7.2 takes the

form
P A x=xy = WP(S, Q[xo/x,x/x']).
Thus in the present case, we have to prove that

R, A h#l A h=h0 A Z=Z,. = WP(Dl, h < h, A RZ).

2 0 0
The weakest precondition for the abstraction Dy is given by the formula

WP(rep oxBy.y=t A I: S per, R)
& Ix(y=t A1) A
vx(y=t A I = WP(S, I A R[t/x])j.
Thus, in order to establish that Do.i Dl’ we have to prove that
R2 A h#l A h=hO A z=Z »
> Ixy(h=x" A x > 1)

A va(h=xy AX>1=W(y,z:=y-1,2°x,{x > 1 A X < ho A Rz[xy/h])

The first term of the conjunction is clearly implied by the left hand side,
by taking x=h, y=1. This trgether with some other simplifications gives us

the formula

h-z=XY Ah>1Aa h=h0 Ah=x A x>1

- x>1ax 1< hy A Ll zex=xE A L > 1.

Using the properties of integer arithmetic, this formula can be seen to hold.

EXAMPLE 7.4 The last implementation that we performed in section 7.1

was the implementation of Eg with Eq» where

Ey: R, A b7l }sskip
and
E;: Tep a<x,y>g<h>. (h=x" A x > 1):

do 2]y -» x,y:=xex,y/2 od
per.
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To prove that E, < E;, we can still use the theorem 7.2, because
skip =~ set <>.true,

a fact that is easily verified. In this case the premise of theorem 7.2

takes the form
P A y=yy = WP(S, y=yy),
because Q = true. Thus we have to prove that

R, A h#1 A h=h, = WP(E,, h=h0).

2 0

Computing the weakest precondition gives us the formula

Ry A h#1 A h=h, = ny(h=xy AX>1s= WP(Ei,xI>1 A xy=h0)),

0

where
E{: do 2]y = x,y:= x+x,y/2 od,

where we omitted the conjunct 3xy(h=xy A X > 1) because it was already
proved to follow from the assumptions given (in example 7.3). This can be
proved by the usual invariant technique,referred to in example 7.1, by taking

the condition

Uy
x>1AX hO A h0 > 1

as the loop invariant. The lccp will terminate because each turn around
the loop will decrease the number of factors 2 in y, while~2|y will hold

if and only if the number of factors 2 in y is zero.
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7.3 Transformation rules for assertions

As shown in chapter 6.2, assertions play an important part in program
development by stepwise refinement, as formalised in this thesis. Therefore,
proof rules are needed by which assertions can be introduced at various places
in program descriptions. The assertions introduced give information about

the context in which they appear, thereby making it easier to find a correct
replacement for a component.

We will not present a complete list of asserticn rules to be used in
program developement, but will restrict ourselves to only giving examples
of proof rules concerning assertions. The examples are partly chosen to

show the correctness of the refinement steps made in section 7.1 and.
partly for later use.

Before going into the examples, we will, however, prove another form

of the result in lemma 5.10(i), which gave the induction rule for loops.

LEMMA 7.5 Let A be a countable set of sentences of L. If
n
A - {P};do Bj » Sl ... B»S od < S, forn <u,

then A = {P};do B, - Sll ool B > Sn od < s,

Proof: Let the program descriptions above all be program descriptions in V,
where V is a finite nonempty set of program variables. Let V = V and G be as
usual. Using the abbreviations

D0 =do B, » S l...I B »S od"  and

DO = do B1 - S1 fool Bn - Sn od,
we have to prove that
WP({P};D0", G(v)) = WP(S, G(v)) forn < w (7.4)

implies  WP({P};DO, G(v)) = WP(S, G(V)). (7.5)
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The assumption (7.4) gives us that

P A WP(DOn, G(v)) = WP(S, G(v)), for n < w,
or equivalently

P (WP(DO", G(v)) = WP(S, G(V))), for n < w.
Make the assumption P. We then have that

WP(DOn, G(v)) = wWP(S, G(v)), forn < w ,
and using the inference rule for infinite disjunction, we get that

v WP(DOR, G(v)) = WP(S, G(v)), i.e.

n<w -

WP(DO, G(v)) = WP(S, G(v)).
Using the deduction theorem, we get from this that

P = (WP(DO, G(v)) = WP(S,G(v))), i.e.

P A WP(DO, G(v)) = WP(S,G(v)),

which gives the final result (7.5). o

EXAMPLE 7.5 1f ARP=P' then Al-{P} <{P'} . This is obvious,

by considering
WP({P},G(v)) = WP({P'},G(v)), i.e.

P A G(v) = P'" A G(v).

Because Al- P = true for any P, we have A+ {P} < skip for

any P, remembering that skip = {true}. Therefore, an assertion may always
be replaced with the skip statement, and the resulting description will be a
refinement of the original description. Thus we are always allowed to remove

an assertion without affecting the correctness of the program description.

EXAMPLE 7.6 If A FDP = WP(S,Q), then A {P};S < {P};S;{Q}. This is

also easily seen, because

WP({P};S,G(v)) « P A WP(S,G(V))
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and
P A WP(S,G(v)) = P A WP(S,Q) A WP(S,G(v))
= P A WP(S, Q A G(V)) (lemma 5.11 (ii) )
e WP({P};S;{Q}, G(v)).

Thus, using the previous example, we have that Ak P = WP(S,0)
implies that A |- {P};S ~ {P};S;{Q}

EXAMPLE 7.7 The facts that

(i) b F {PHif B, > S, I...| B -5, fi
~ {P};if B, - {P A Bl};S1 leaol {P'A Bn}',Sn fi
and
(ii) Ak if By > S l...l B~ S £i3{Q}
%_i_fBleSl;{Q}.l...l Bn—>Sn',{Q} fi

also follow directly, by analysing the corresponding weakest preconditions.

EXAMPLE 7.8 We use the previous examples and lemma 7.5 to show that
A - {P};do B, - Sl;{P} booeo 1B - Sn;{P} od

~ {P};do By » {By A P};Sy;3{P} I...1 B > {B_A P};S ;{P} od.

1?
Denote the left hand side by {P};DO and the right hand side by
{P};D0'. By example 7.5, we only need to show that {P};D0O < {P};DO'. Using

the lemma 7.5, to show this, it is sufficient to show that
{P};DOn'f_ {P};D0", for n < w.
Because DO‘nli DO' for every n < w, it will be sufficient to show that

{P};00" < {P};p0'"  for n < w. (7.6)

For n = 0 this result is obvious, as {P};DOO ~ abort. Assume that (7.6)

holds for n, n < w.
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By the definition of UUD, we have that

{r}; no"*!
_ N o 5 Q- L oQ .1
= {P}’li BB » if Bl Sl,{P} levold Bn Sn,{D}fl,DO
| ~BB -» skip fi
-1 - i - S - . ) ot
< {P}vlf BB {P}vlf Bl 51,{P}1..I Bn Sn,{P} £i,D0
| ~BB » skip fi
< {P};if BB » if R - {P A Bl};Sl;{P} .

. n
I B - {Pa Bn};Sn;{P} fi;{P};D0
| ~BB » skip fi

{P};DO'n+1.

| A

In the first refinement above, we used example 7.7(i) and 7.5 (the latter e.g.
when replacing P A BB with P, because P A B = P). In the second refinement

we used example 7.7(i) and (ii), as well as example 7.5. The last refinement
used the induction hypothesis, and the definition of po'",

EXAMPLE 7.9 Finally we have - assertion rules concerned with abstractions.
The soundness of these rules can all be checked by considering the
corresponding weakest preconditions, as was done in the preceeding examples.
The rules are as follows, with D = axBy.(y=t A I):
(i) A - {P};rep D: S per;{Q}

~ {P};rep D: {P[t/y] A I}; S ;{ Qlt/yl A I} per;{Q},

(ii) A = {P};rep D: S end;{Q}

~ {P};rep D: {Plt/yl A T}; S ;{vyQ} end;{Q},

(iii) A + {P};beg D: S per;{Q}

~ {P};beg D:{3yP}; S ; {QIt/yl A I} per;{Q} , and
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(iv) A = {P};beg axBy: S end;{Q}
~ {P};beg axBy:{3yP}; S ;{vyQ} end;{Q}.

The last case simplifies for the block to
) A = {P};beg x: S end;{0}
~ {P};beg x:{P}; S ;{Q}.end;{Q}.

because x cannot occur free in P or O, and no variables are deleted, i.e.

y = <>,

In the refinements of sectioan 7.1, rules for assertions were needed in

the refinements of A, to A, and of B1 to B,. In the first case, the fact

1
that A, f-Al can be justified using the rule in example 7.7(i), while the

fact that Bl.i B, holds can be justified using the rule (v) in example 7.9

and the rule in example 7.8.
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7.4 Transformation rules for abstractions

In this subchapter we give some rules for handling abstractions in
program descriptions. The purpose of these rules is to enable one to
eliminate an abstraction that las been previously introduced into a
program description. As in the previous subchapters of this chapter, we

do not aim at a complete set of rules, tut will ke content with giving the
most basic ones, mainly in order to show the correctness of the program
transformation rules used in developing the example program in section
7.1. The rules given will not always be in the most general form

possible.

For the formulation of the results below, we will fix below a
countable set A of senténces of L. We also have a finite nonempty set V
of program variables. Let D = axRy.{y=t A I):V > W be a description.
Here var(t) < W and var(I) < W. Also, let

= . Q!
I O

S. = 1ep
vy =&

for i =1 ,N

nAYv
i tJ\./L, 4 Lgese

where n > 1.

LEMMA 7.6 If A - P= 3x(y=t A I), then

A - {P};skip < rep D: skip per.

Proof: The case here is similar to the case in example 7.4, and we have to

prove that
P Ay=y,= WP(rep D: skip per, y=y0). (7.7)
Computing the weakest precondition, this gives us the formula
PAysy,= vx(y=t A I = t=y, A 19

where we have already used the assumption that P = 3x(y=t A I) to eliminate
the formula 3Ix(y=t A I) on the right hand side of (7.7).
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Let us assume that
P A Y=Y AY=t A I.
This gives the result that
t=yy A I,
and by the deduction theorem, we have that
y=t A I = t=y, A I,
under the assumption P A Y=Yq- As x is not free in this assumption, we get
vx(y=t A I = t=yy A 1),

and another application of the deduction theorem will then give the desired

result. o

LEMMA 7.7 A |- Sl',...;Sn < rep D: Si;...;Sﬁ per , for n > 2.

Proof: We prove the case for n=2, the general case follows by induction on n.
For the proof, let k be the number of variables in V, and let v be a list of
distinct variables, Vv = V. Let G be a new k-place predicate symbol. By
theorem 5.4, we have to prove that

WP(Sl;SZ, G(v)) = WP(rep D: Si;Sé per, G(v)).
First, we have that
WP(SZ, G(v)) @ Ix(y=t A I) A ¥x(y=t A I = WP(S},I A G(V)[t/y]))
ﬁpl A PZ’
and

WP(S,, P; A Pz) e Ix(y=t A 1)

12 71
A YX(yst A I = WP(Si, I A P][t/y] A Pz[t/y])).
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We concentrate on the formula Pz[t/y]. Changing the bound variable x to a

fresh variable x' gives

P, e vx!'(y=t[x'/x] A T[x'/x] = WP(S},T A G(V)[t/yDIx'/x] ),
thus making t free for y in the formula P,. Thus we have that

Pz[t/y]¢¢VX’(t=t[x'/x] A I[x'/x]=aWP(Sé,I A GV [t/yDIx'/x]1)
By substituting x for x' in Pz[t/y], we get that

PoIt/y] = (t=t a T = WP(S3, T A GOV It/y]))],

or equivalently,

Pz[t/y] AT =TP(S5, T AGWV)It/yD).

Using this result, we have that
IA Pl[t/y] A P,lt/yl = WP(S),T A G(V)[t/yl ),
and using the geiieralisation rule, this gives us that
ww(l A PyIt/y]l A Pylt/y] = WP(S;, T A G(v)[t/yD),

where w is a list of distinct variables, W = W. We may therefore use

lemma 5.11(ii), and get
WP(S1, T A Pylt/yl A P,lt/y]l)
> WP(S{, WP(S}, T A G(V)[t/y]))
& WP(Si;S', I A GWV)It/y]).

Thus we have that

WP(S13S,, G(V)) = WP(Sy, Py A P,)

1° 71
@ Ix(y=t A I) A Vx(y=t A I = WP(S',I A Pl[t/y]/\PZ[t/y]))

2’

= IX(y=t A I) A WX(y=t A I = WP(S' S5, I A G(v)[t/y]))
< WP(rep D: S1;S5, G(v)),

as required. o
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LEMMA 7.8 LetS=}_iiB1—>Sll...an—>Sn£1_ and

=3 1 !
S 1_’f_B1—>S1

Assume that A |- P = 3x(y=t A I), and further that

! H -
| Bn—bsng.

A PAaytals (BiaBi)‘, for i = 1,...,n.

Then A I-{P};S < rep D: S' per. Here Si’ Si and D are assumed to be as
stated at the beginning of the this subchapter.

Proof: Let v and G be as in the proof of 7.7, and assume that

WP({P};S, G(v)),

i.e, writing BB for By v ... vB,we have the assumption
P A BBA A (B =WP(S;,G(v})). (7.8)
1<i<n t

We have to prove that WP(rep D: S' per, G(v)) holds, i.e. that

Ix(y=t A I) A ¥x(y=t A I =WP(S', T A GW)[t/y])).
The first conjunct is implied by (7.8) because of the assumption, so
we only need to prove that the second conjunct also is implied. Assume
therefore that

y=t A I. : (7.9)
Then Bi = Bi by the assumption, for i = 1,...,n, so we get from (7.8) that

Bi V oeoo

Now,let i be an integer, 1 < i < n, and assume that Bi. By the assumption

v B!
n

of the lemma, this means that B, holds. By (7.8), this will again give that
WP(S;, G(v)) holds, i.e. we have that

Ix(y=t A-I) A ¥x(y=t A I = WP(Si, I A GWV)[t/y])).
Thus, by assumption (7.9}, we have that

VT(Si, I AGW)It/y]).
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Removihg the assumption that B! holds, this means that
Bi = WP(Si, I A GWV)It/y]D),
and as 1 was arbitrarily chosen , 1 < i < n, we have that

A (Bi' = WP(Si', I AGW)It/y))
liiin :

This, together with the fact that Bi Voeeo ¥ Br'1 holds, means that
WP(S', I A G(v)[t/yl).

Eliminating assumption (7.9) gives
y=t A I = WP(S', T A G(V)[t/y]),

and as x 1s not free in assumption (7.8), we have
vx(y=t » I = WP(S', T A G(V)[t/y])),

thus concluding the proof. o

LEMMA 7.9 Let DO =do By - Sl;{P}l ...l B - Sn;{P} od, P' = Plt/yl al

1
and DO'= do BJ - S{3{P'}l ... | B! »8';{P'} od .
Assume that A |~ P = 3x(y=t A I}, and further that

Al PAaystals= (Biﬁ Bi'), for i =1,...,n.

Then 4 = {P};D0 < rep D: DO' per. Here S., S{ and D are assumed to be

as stated at the beginning of this subchapter.

Proof: Let DO and D0'" have their usual meaning. We will prove that
{p};D0O" < rep D: po'™ per , forn<w . (7.10)
Because DO'" < DO', this will give us that
{P};DO" < xep D: DO' per , for n < w,

from which the desired result then follows using lemma 7.5.
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For n = 0, (7.10) obviously holds, as DO0 = gbort. Assume that (7.10)
holds for n, n > 0. We have that

(P};00™1 = {P};if BB » if B » S;3{P} I...1 B~ S ;{P} fi;
n
DO
| ~BB - skip fi
< {P};if BB - {P};if B, - sl;{P} |
. n
l B - Sn;{P} fi; {P};D0
| ~ER - {P};skip fi ,
Using the rules for assertions discussed in subchapter 7.2Z.

By lemma 7.6, we have

{P};skip < rep D: skip per, (7.11)
and using example 7.9(i) we have that

{P};skip < rep D:{P'};skip per.
This means that

{P} < rep D: {P'} per,

because {P};skip ~ {P} for any P.

Now, using lemma 7.7 we get that
Si;{P} < rep D: Si';{P’} er, for i = 1,...,n.

And using lemma 7.8, we get from this that

{P};if By » S;3{P} | ... I B =8 ;{P} fi
< rep D: if B} - S13{P'}... | B! » S!;{P'} fi per

Finally, using induction hypothesis (7.10), result (7.11), lemma 7.7 and
lemma 7.8 again, we finally get the result

1

{p};p0™" < rep D: po er,

thus proving that (7.10) holds for each n < w. o
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The transition step leading from B; to B, in the example of section 7.1 can
be justified by the lemma 7.9. In order to apply the required transformation
we need to prove the following two conditions:

(i) R, = 3x,y. (h=x aAx>1) , and

2
(i) Ryah=x" Ax>1 = (h#ley#0)

Writing R, explicitly, we get the formulas

XY/\h_>_l = Elx,y.(h=xy/\x>l) , and

(i) hez
(11) hez XY Ah>1Ah-= X Ax>1 = (h#ley#0) .

These formulas are readily seen to be true.

The transition from B, to B5 is justified by lemma 7.7, by noting that this
lemma still holds when S; = beg D: 5] per (this is readily seen by inspecting
the proof of the lemma). To prove the final step from Bc to B6’ where the
abstraction is eliminated, we need the following lemma.

IEMMA 7.10 let Vbhe V' U ¥v' V' ny' =@, for some list y' of program variables

and some nonempty set V' of program variables. Assume that ¥ < ¥'. Then

6 F begy': beg D: S per end < begy",x: S end,
where "' = y' -y, S:W->Wand D =oxBy.(y =t A I):V ~> W as before.

- Proof: Let k be the number of variables in V', and let v' be a list of
distinct variables, V' = V'. Let G be a k-place predicate symbol. Let 51 denote
the left hand side of the above and S, the right hand side. We have to

prove that

WP(Sl,G(V')) = WP(SZ,G(V')).
Assume therefore that

WP(Sl, G(v')).
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The assumption gives us, by definition of WP, that
vy 'WP(beg D: S er,G(v')) ,

which again is equivalent to
vy'sWP(S, T A G(v")[t/yD).

Mow, because y N V' = @, as y € y', y camnot occur free in G(v'), so
G(v")[t/yl = G(v'). Thus we have that

ww(l A G(v)[t/y] = G(v")),
and using lemma 5.11(ii), this gives us that

WP(S, T A G(v")I[t/yl ) = WP(S, G(v")),

i.e. the assumption gives us that
Yy 'xWP(S,G(v'")).

As y cannot occur free in WP(S, G(v')), because S:W > W, and y N W = ¢,

this is again equivalent to
vy'"xWP(S,G(v")),

which, from the definition of WP, is
WP(beg y'",x: S end, G(v')).

This proves the lemma. o
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7.5 Transformation rules for control structures

We finally outline the technique for showing the correctness of program
transformations involving control structures. We will not be as formal
here as in the preceding chapters, and feel free to use some obvious, but
unproven results. We use the refinement of Fj to Fy in the example of

section 7.1 to illustrate the technique.

The refinement of F, to F1 can be justified by the following rle for

loops.

EXAMPLE 7.10 Let
DO = do B - DO';S od,
DO' = do B' » S' od and

DO" =do B> if B' > S' | ~B' » S fi od .

Assume that {B A B'};S' < {B A B'};S;{B}. Then DO < DO".

We first show that

{B};p0'";S;D0 < {B};D0", for n < w. (7.12)

(

.. . )
For n = 0 this is obvious, as {B};DO' ;S;D0 ~ abort. Assume that (7.12)

holds for n, n < w. We have that

,n+1

{B};D0""" ;8300 = {B};if B' » S";D0'""| ~B' » skip £i;S;D0.

Consider now separately the two cases B A B' and B A ~B'.

(i) B A B'. We have that
B A B'}:00™ 18300 < {B A B'};S'300' ;5500
< {B A B'};8";{B};D0' ;5510

because the alternative B' must in this case be chosen in DO'n+1. Using

the induction hypothesis, this gives us that
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{B A B'};00™* 5500 < (B A B'};S';D0M

Because of the condition B A B', we have
(B A B'};S00" < {B A B'};if B if B! » S';007
| ~B' > S ;DO" fi
| ~B » skip fi

A

{B AB'};if B> if B' > S' | ~B' » S fi;
m‘l
| ~B > skip fi

A

{B A B'"};DO".
Thus we have that

{B A B'};00™Ls:00 < {BA B;DO" .
y .

(ii) B A ~B'. We have that
{B A ~B'};00™* 5,00 < (B A ~B'};S;00,
as the loop will not be entered when B' is false. For the same reason,
we have that
{B A ~B'};S;00 < {B A ~B'};{B};D0'";S;D0
< {B A ~B'};D0",
by use of the induction hypothesis. Thus we have that

{Ba~B'};00™ 1500 < {B A ~B'};D0O".
’ —

Putting these two cases together gives the required result, i.e. we get that

{B};DO'n+1

;S;D0 < {B};DO" ,
which proves that (7.12) holds for every n < w. From this we infer that
{B};D0';S;D0 < {B};DO". (7.13)

This inference can be proved correct with a similar argument as was used in

the proof of lemma 7.5.
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We now turn to our main task, i.e. to proving that DO < DO". We show
this by showing that

po" < DO, for n < w. (7.14)

For n = 0 this is immediate, es usual. Assume that (7.14) holds for n, n < w.
We then have that

o™l = if B - D0';S;00" | ~B > skip fi

I A
H-
f—h

- {B};D0";$;D0 | ~B =~ skip fi

- {B};D0" | ~B - skip fi

I A
—
}\-h
oe] o] o]

| A
[
}\-h

- if B'->S' | ~B' > S fi;DO"
| ~B - skip fi
i mll.
In these steps we have made use of the fact that
m” [} E B > E Bl > Sl l NBI - S _fi;ml'
| ~B - skip fi.

The derivation shows that (7.14) holds, thus proving the desired result.
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