Difference between revisions of "Calculus:Derivative of Trigonometric Functions"

From PKC
Jump to navigation Jump to search
(Created page with "#<math>f(sin x)'= cos(x)</math> #<math>f(cos x)'= -sin(x)</math> #<math>f(tan x)'= sec^2(x)</math> #<math>f(cot x)'= -csc^2(x)</math> #<math>f(csc x)'= -csc(x) cot(x)</math> #...")
 
Line 5: Line 5:
#<math>f(csc x)'= -csc(x) cot(x)</math>
#<math>f(csc x)'= -csc(x) cot(x)</math>
#<math>f(sec x)'= sec(x) tan(x)</math>
#<math>f(sec x)'= sec(x) tan(x)</math>
==How do we get the equation==
<math>f(sin x)'= cos(x)</math> and <math>f(cos x)'= -sin(x)</math> you only can tell by looking at the graph so we will skip it to.
So we will started with
<math>f(tan x)'= sec^2(x)</math>
We know that <math>tan x = {sin x \over cos x}</math>

Revision as of 11:48, 31 August 2021

How do we get the equation

and you only can tell by looking at the graph so we will skip it to.

So we will started with

We know that