Difference between revisions of "Integral"
Jump to navigation
Jump to search
(30 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<noinclude> | |||
==Vocabulary of the equation== | ==Vocabulary of the equation== | ||
#c = constant | #c = constant | ||
#n = constant | #n = constant | ||
Line 8: | Line 8: | ||
But when you are looking at the equation you must need to know F(x)= f'(x). | But when you are looking at the equation you must need to know F(x)= f'(x). | ||
#<math>\int_{a}^{b} f(x) \,dx = F(b) - F(a)</math> | #<math>\int_{a}^{b} f(x) \,dx = F(b) - F(a)</math> | ||
#<math>\int_{a}^{b} {x^{n}}\,dx ={ b^{n+1} \over n+1 } - { a^{n+1} \over n+1 }</math> | #<math>\int_{a}^{b} c{x^{n}}\,dx =c{ b^{n+1} \over n+1 } - c{ a^{n+1} \over n+1 }</math> | ||
==Indefinite Integral== | ==Indefinite Integral== | ||
Some equations you can remember | Some equations you can remember | ||
But same you must need to know F(x)= f'(x). | But same you must need to know F(x)= f'(x). | ||
</noinclude> | |||
#Indefinite Integral <math>\int f(x) \,dx = F(x)+c,</math> | #Indefinite Integral <math>\int f(x) \,dx = F(x)+c,</math> | ||
#sum rule of Indefinite Integral <math>\int [f(x)+g(x)] \,dx = \int f(x) \,dx + \int g(x) \,dx </math> | #sum rule of Indefinite Integral <math>\int [f(x)+g(x)] \,dx = \int f(x) \,dx + \int g(x) \,dx </math> | ||
#The Difference Rule <math>\int [f(x)-g(x)] \,dx = \int f(x) \,dx - \int g(x) \,dx</math> | #The Difference Rule <math>\int [f(x)-g(x)] \,dx = \int f(x) \,dx - \int g(x) \,dx</math> | ||
#Indefinite Integral <math>\int x^n \,dx = { | #Indefinite Integral <math>\int x^n \,dx = { x^{n+1} \over n+1 }+c</math> | ||
#constant <math>\int c* f(x)dx = c \int f(x)dx</math> | #Natural log rule <math>\int {n \over x} \,dx = { ln |x^n|}</math> | ||
#<math>\int a^x dx = {a^x \over ln (a)}</math> | |||
#constant(constant can be pull out in the Indefinite Integral) <math>\int c* f(x)dx = c \int f(x)dx</math> | |||
<noinclude> | |||
==Examples== | ==Examples== | ||
====Examples for Definite Integral==== | ====Examples for Definite Integral==== | ||
#<math>\int_{a}^{b} f(x) \,dx = F(b) - F(a)</math> | |||
This is the rule that we will going to used for calculating areas | |||
Know Here are some example for you to do | |||
=====Examples for Definite Integral 1===== | |||
<math>\int_{2}^{3} 8x^3 + 3x^2 + 6x \,dx </math> | |||
using this equation | |||
<math>\int_{a}^{b} c{x^{n}}\,dx =c{ b^{n+1} \over n+1 } - c{ a^{n+1} \over n+1 }</math> | |||
<math>\int_{2}^{3} 8x^3 + 3x^2 + 6x \,dx = (8({3^{3+1} \over 3+1}) + 3({ 3^{2+1} \over 2+1}) + 6({ 2^{1+1} \over 1+1 }))- (8({2^{3+1} \over 3+1}) + 3({ 2^{2+1} \over 2+1}) + 6({ 2^{1+1} \over 1+1 }))</math> | |||
<math>\int_{2}^{3} 8x^3 + 3x^2 + 6x \,dx = (8({3^{4} \over 4}) + 3({ 3^{3} \over 3}) + 6({ 3^{2} \over 2 }))- (8({2^{4} \over 4}) + 3({ 2^{3} \over 3}) + 6({ 2^{2} \over 2 }))</math> | |||
<math>\int_{2}^{3} 8x^3 + 3x^2 + 6x \,dx = (8({81 \over 4}) + 3({ 27 \over 3}) + 6({ 9 \over 2 }))- (8({16 \over 4}) + 3({ 8 \over 3}) + 6({ 4 \over 2 }))</math> | |||
<math>\int_{2}^{3} 8x^3 + 3x^2 + 6x \,dx = (2(81) + ( 27 ) + 3( 9 ))- (2(16) + ( 8 ) + 3( 4 ))</math> | |||
<math>\int_{2}^{3} 8x^3 + 3x^2 + 6x \,dx = (162 + 27 + 27 )- (32 + 8 + 12 ))</math> | |||
<math>\int_{2}^{3} 8x^3 + 3x^2 + 6x \,dx = (216)- (52)</math> | |||
<math>\int_{2}^{3} 8x^3 + 3x^2 + 6x \,dx = 164</math> | |||
</noinclude> |
Latest revision as of 13:51, 16 September 2021
Vocabulary of the equation
- c = constant
- n = constant
- = Integrals from a to b
Definite Integral
Some equations you can remember But when you are looking at the equation you must need to know F(x)= f'(x).
Indefinite Integral
Some equations you can remember But same you must need to know F(x)= f'(x).
- Indefinite Integral
- sum rule of Indefinite Integral
- The Difference Rule
- Indefinite Integral
- Natural log rule
- constant(constant can be pull out in the Indefinite Integral)
Examples
Examples for Definite Integral
This is the rule that we will going to used for calculating areas
Know Here are some example for you to do
Examples for Definite Integral 1
using this equation