Difference between revisions of "Calculus:Derivative of Trigonometric Functions"

From PKC
Jump to navigation Jump to search
 
(35 intermediate revisions by the same user not shown)
Line 6: Line 6:
#<math>f(sec x)'= sec(x) tan(x)</math>
#<math>f(sec x)'= sec(x) tan(x)</math>


<noinclude>
==How do we get the equation==
==How do we get the equation==
<math>f(sin x)'= cos(x)</math> and <math>f(cos x)'= -sin(x)</math> you only can tell by looking at the graph so we will skip it to.  
<math>f(sin x)'= cos(x)</math> and <math>f(cos x)'= -sin(x)</math> you only can tell by looking at the graph so we will skip it to.  
Line 26: Line 27:




<math> {cos}^2 x + {sin}^2 x = 1</math>


<math>{cos}^2 x + {sin}^2 x} = 1</math>
<math>f({sin x \over cos x})'={1 \over {cos}^2 x }</math>


<math>f({sin x \over cos x})'={1 \over {cos x}^2 }</math>
<math>f({sin x \over cos x})'={1 \over {cos}^2 x } = {1 \over cos x } {1 \over cos x }</math>
 
need to know that
 
<math>{1 \over cos x } = sec x</math>
 
<math>f(tan x)' = f({sin x \over cos x})' = {1 \over {cos}^2 x } = {sec}^2 x</math>
 
==cot x==
why did <math>f(cot x)'= -csc^2(x)</math>
 
first start with
 
<math>cot x = {cos x \over sin x} </math>
 
so
 
<math>f(cot x)'= f({cos x \over sin x})'</math>
 
by using the Quotient Rule <math>({f \over g})' = {(gf'-fg') \over g^2} </math>
 
<math>f({cos x \over sin x})'= {sin x (cos x)'- cos x (sin x)' \over {sin}^2 x}</math>
 
<math>f(sin x)'= cos(x)</math>
 
<math>f(cos x)'= -sin(x)</math>
 
<math>f({cos x \over sin x})'= {-sin x sin x- cos x cos x \over {sin}^2 x}  </math>
 
<math>f({cos x \over sin x})'= {-{sin}^2 x - {cos}^2 x \over {sin}^2 x}  </math>
 
but
 
<math> -{sin}^2 x - {cos}^2 x = -1  </math>
 
so
 
<math>f({cos x \over sin x})'= {-1 \over {sin}^2 x}  </math>
 
<math>f({cos x \over sin x})'= {-1 \over sin x} {1 \over sin x} </math>
 
<math>{1 \over sin x} = {csc} x</math>
 
<math>f(cot x)'= f({cos x \over sin x})'= - {csc}^2 x</math>
 
==csc x==
why did <math>f(csc x)'= -csc(x) cot</math>
 
In trigonometry
<math> csc x = {1 \over sin x}</math>
 
so
 
<math>f(csc x)'= f({1 \over sin x})'</math>
 
by using the Quotient Rule <math>({f \over g})' = {(gf'-fg') \over g^2} </math>
 
g = sin x
 
f = 1
 
<math>f({1 \over sin x})' = {{sin x (1)' - 1 (sin x)'} \over {sin}^2 x}</math>
 
need to know (1)'= 0
 
and (sin x)' = cos x
 
so
 
<math>f({1 \over sin x})' = {{(0 sin x)- cos x} \over {sin}^2 x}</math>
 
next
 
<math>f({1 \over sin x})' = {- cos x \over {sin}^2 x}</math>
 
<math>{- cos x \over {sin}^2 x} = -{cos x \over sin x} {1 \over sin x}</math>
 
In trigonometry
 
<math>{cos x \over sin x} = cot x </math>
<math>{1 \over sin x} = csc x </math>
 
so
 
<math>f({1 \over sin x})' = -cot x * csc x</math>
==Sec x==
why did <math>f(sec x)'= sec(x) tan(x)</math>
 
In trigonometry
 
<math> sec x = (1 \over cos x)</math>
 
so we can say that
 
<math>f(sec x)'=  f({1 \over cos x})'</math>
 
by using the Quotient Rule <math>({f \over g})' = {(gf'-fg') \over g^2} </math>
 
g = cos x
 
f = 1
 
<math>({1 \over cos x})' = {cos x (1)' - (1) (cos x)' \over {cos}^2 x} </math>
 
<math>({1 \over cos x})' = {cos x (1)' - (1) (cos x)' \over {cos}^2 x} </math>
 
so
 
<math>{cos x (1)' - (1) (cos x)' \over {cos}^2 x} = {sin x \over {cos}^2 x} </math>
 
<math> {sin x \over {cos}^2 x} = {{sin x \over cos x}{1 \over cos x}} </math>
 
In trigonometry
 
<math>{sin x \over cos x} = tan x </math>
 
<math>{1 \over cos x} = sec x </math>
 
</noinclude>

Latest revision as of 06:33, 17 September 2021


How do we get the equation

and you only can tell by looking at the graph so we will skip it to.

tan x

So we will started with

We know that If you have learn trigonometry then.

by using the Quotient Rule



need to know that

cot x

why did

first start with

so

by using the Quotient Rule

but

so

csc x

why did

In trigonometry

so

by using the Quotient Rule

g = sin x

f = 1

need to know (1)'= 0

and (sin x)' = cos x

so

next

In trigonometry

so

Sec x

why did

In trigonometry

so we can say that

by using the Quotient Rule

g = cos x

f = 1

so

In trigonometry