Difference between revisions of "Calculus:Derivative of Trigonometric Functions"
Jump to navigation
Jump to search
(→cot x) |
(→Sec x) |
||
(29 intermediate revisions by the same user not shown) | |||
Line 6: | Line 6: | ||
#<math>f(sec x)'= sec(x) tan(x)</math> | #<math>f(sec x)'= sec(x) tan(x)</math> | ||
<noinclude> | |||
==How do we get the equation== | ==How do we get the equation== | ||
<math>f(sin x)'= cos(x)</math> and <math>f(cos x)'= -sin(x)</math> you only can tell by looking at the graph so we will skip it to. | <math>f(sin x)'= cos(x)</math> and <math>f(cos x)'= -sin(x)</math> you only can tell by looking at the graph so we will skip it to. | ||
Line 53: | Line 54: | ||
<math>f({cos x \over sin x})'= {sin x (cos x)'- cos x (sin x)' \over {sin}^2 x}</math> | <math>f({cos x \over sin x})'= {sin x (cos x)'- cos x (sin x)' \over {sin}^2 x}</math> | ||
<math>f(sin x)'= cos(x)</math> | |||
<math>f({cos x \over sin x})'= </math> | <math>f(cos x)'= -sin(x)</math> | ||
<math>f({cos x \over sin x})'= {-sin x sin x- cos x cos x \over {sin}^2 x} </math> | |||
<math>f({cos x \over sin x})'= {-{sin}^2 x - {cos}^2 x \over {sin}^2 x} </math> | |||
but | |||
<math> -{sin}^2 x - {cos}^2 x = -1 </math> | |||
so | |||
<math>f({cos x \over sin x})'= {-1 \over {sin}^2 x} </math> | |||
<math>f({cos x \over sin x})'= {-1 \over sin x} {1 \over sin x} </math> | |||
<math>{1 \over sin x} = {csc} x</math> | |||
<math>f(cot x)'= f({cos x \over sin x})'= - {csc}^2 x</math> | |||
==csc x== | |||
why did <math>f(csc x)'= -csc(x) cot</math> | |||
In trigonometry | |||
<math> csc x = {1 \over sin x}</math> | |||
so | |||
<math>f(csc x)'= f({1 \over sin x})'</math> | |||
by using the Quotient Rule <math>({f \over g})' = {(gf'-fg') \over g^2} </math> | |||
g = sin x | |||
f = 1 | |||
<math>f({1 \over sin x})' = {{sin x (1)' - 1 (sin x)'} \over {sin}^2 x}</math> | |||
need to know (1)'= 0 | |||
and (sin x)' = cos x | |||
so | |||
<math>f({1 \over sin x})' = {{(0 sin x)- cos x} \over {sin}^2 x}</math> | |||
next | |||
<math>f({1 \over sin x})' = {- cos x \over {sin}^2 x}</math> | |||
<math>{- cos x \over {sin}^2 x} = -{cos x \over sin x} {1 \over sin x}</math> | |||
In trigonometry | |||
<math>{cos x \over sin x} = cot x </math> | |||
<math>{1 \over sin x} = csc x </math> | |||
so | |||
<math>f({1 \over sin x})' = -cot x * csc x</math> | |||
==Sec x== | |||
why did <math>f(sec x)'= sec(x) tan(x)</math> | |||
In trigonometry | |||
<math> sec x = (1 \over cos x)</math> | |||
so we can say that | |||
<math>f(sec x)'= f({1 \over cos x})'</math> | |||
by using the Quotient Rule <math>({f \over g})' = {(gf'-fg') \over g^2} </math> | |||
g = cos x | |||
f = 1 | |||
<math>({1 \over cos x})' = {cos x (1)' - (1) (cos x)' \over {cos}^2 x} </math> | |||
<math>({1 \over cos x})' = {cos x (1)' - (1) (cos x)' \over {cos}^2 x} </math> | |||
so | |||
<math>{cos x (1)' - (1) (cos x)' \over {cos}^2 x} = {sin x \over {cos}^2 x} </math> | |||
<math> {sin x \over {cos}^2 x} = {{sin x \over cos x}{1 \over cos x}} </math> | |||
In trigonometry | |||
<math>{sin x \over cos x} = tan x </math> | |||
<math>{1 \over cos x} = sec x </math> | |||
</noinclude> |
Latest revision as of 06:33, 17 September 2021
How do we get the equation
and you only can tell by looking at the graph so we will skip it to.
tan x
So we will started with
We know that If you have learn trigonometry then.
by using the Quotient Rule
need to know that
cot x
why did
first start with
so
by using the Quotient Rule
but
so
csc x
why did
In trigonometry
so
by using the Quotient Rule
g = sin x
f = 1
need to know (1)'= 0
and (sin x)' = cos x
so
next
In trigonometry
so
Sec x
why did
In trigonometry
so we can say that
by using the Quotient Rule
g = cos x
f = 1
so
In trigonometry