Difference between revisions of "Calculus:Derivative of Trigonometric Functions"

From PKC
Jump to navigation Jump to search
 
(24 intermediate revisions by the same user not shown)
Line 6: Line 6:
#<math>f(sec x)'= sec(x) tan(x)</math>
#<math>f(sec x)'= sec(x) tan(x)</math>


<noinclude>
==How do we get the equation==
==How do we get the equation==
<math>f(sin x)'= cos(x)</math> and <math>f(cos x)'= -sin(x)</math> you only can tell by looking at the graph so we will skip it to.  
<math>f(sin x)'= cos(x)</math> and <math>f(cos x)'= -sin(x)</math> you only can tell by looking at the graph so we will skip it to.  
Line 54: Line 55:


<math>f(sin x)'= cos(x)</math>
<math>f(sin x)'= cos(x)</math>
<math>f(cos x)'= -sin(x)</math>
<math>f(cos x)'= -sin(x)</math>


Line 59: Line 61:


<math>f({cos x \over sin x})'= {-{sin}^2 x - {cos}^2 x \over {sin}^2 x}  </math>
<math>f({cos x \over sin x})'= {-{sin}^2 x - {cos}^2 x \over {sin}^2 x}  </math>
but  
but  
<math> -{sin}^2 x - {cos}^2 x = -1  </math>
<math> -{sin}^2 x - {cos}^2 x = -1  </math>
so
so
<math>f({cos x \over sin x})'= {-1 \over {sin}^2 x}  </math>
<math>f({cos x \over sin x})'= {-1 \over {sin}^2 x}  </math>


Line 74: Line 80:


In trigonometry  
In trigonometry  
<math> csc x = {1 /over sin x}</math>
<math> csc x = {1 \over sin x}</math>


so  
so  


<math>f(csc x)'= f({1 /over sin x})'</math>
<math>f(csc x)'= f({1 \over sin x})'</math>


by using the Quotient Rule <math>({f \over g})' = {(gf'-fg') \over g^2} </math>
by using the Quotient Rule <math>({f \over g})' = {(gf'-fg') \over g^2} </math>
Line 86: Line 92:
f = 1
f = 1


<math>f({1 /over sin x})' = {{sin x (1)' - 1 (sin x)'} /over {sin}^2 x}</math>
<math>f({1 \over sin x})' = {{sin x (1)' - 1 (sin x)'} \over {sin}^2 x}</math>


need to know (1)'= 0
need to know (1)'= 0
Line 94: Line 100:
so
so


<math>f({1 /over sin x})' = {{(0 sin x)- cos x} /over {sin}^2 x}</math>
<math>f({1 \over sin x})' = {{(0 sin x)- cos x} \over {sin}^2 x}</math>


next
next


<math>f({1 /over sin x})' = {- cos x /over {sin}^2 x}</math>
<math>f({1 \over sin x})' = {- cos x \over {sin}^2 x}</math>
 
<math>{- cos x \over {sin}^2 x} = -{cos x \over sin x} {1 \over sin x}</math>
 
In trigonometry
 
<math>{cos x \over sin x} = cot x </math>
<math>{1 \over sin x} = csc x </math>
 
so
 
<math>f({1 \over sin x})' = -cot x * csc x</math>
==Sec x==
why did <math>f(sec x)'= sec(x) tan(x)</math>
 
In trigonometry
 
<math> sec x = (1 \over cos x)</math>
 
so we can say that
 
<math>f(sec x)'=  f({1 \over cos x})'</math>
 
by using the Quotient Rule <math>({f \over g})' = {(gf'-fg') \over g^2} </math>
 
g = cos x
 
f = 1
 
<math>({1 \over cos x})' = {cos x (1)' - (1) (cos x)' \over {cos}^2 x} </math>
 
<math>({1 \over cos x})' = {cos x (1)' - (1) (cos x)' \over {cos}^2 x} </math>
 
so
 
<math>{cos x (1)' - (1) (cos x)' \over {cos}^2 x} = {sin x \over {cos}^2 x} </math>
 
<math> {sin x \over {cos}^2 x} = {{sin x \over cos x}{1 \over cos x}} </math>
 
In trigonometry
 
<math>{sin x \over cos x} = tan x </math>
 
<math>{1 \over cos x} = sec x </math>
 
</noinclude>

Latest revision as of 06:33, 17 September 2021


How do we get the equation

and you only can tell by looking at the graph so we will skip it to.

tan x

So we will started with

We know that If you have learn trigonometry then.

by using the Quotient Rule



need to know that

cot x

why did

first start with

so

by using the Quotient Rule

but

so

csc x

why did

In trigonometry

so

by using the Quotient Rule

g = sin x

f = 1

need to know (1)'= 0

and (sin x)' = cos x

so

next

In trigonometry

so

Sec x

why did

In trigonometry

so we can say that

by using the Quotient Rule

g = cos x

f = 1

so

In trigonometry