Difference between revisions of "Calculus:Derivative of Trigonometric Functions"
Jump to navigation
Jump to search
(→Sec x) |
(→Sec x) |
||
(8 intermediate revisions by the same user not shown) | |||
Line 6: | Line 6: | ||
#<math>f(sec x)'= sec(x) tan(x)</math> | #<math>f(sec x)'= sec(x) tan(x)</math> | ||
<noinclude> | |||
==How do we get the equation== | ==How do we get the equation== | ||
<math>f(sin x)'= cos(x)</math> and <math>f(cos x)'= -sin(x)</math> you only can tell by looking at the graph so we will skip it to. | <math>f(sin x)'= cos(x)</math> and <math>f(cos x)'= -sin(x)</math> you only can tell by looking at the graph so we will skip it to. | ||
Line 54: | Line 55: | ||
<math>f(sin x)'= cos(x)</math> | <math>f(sin x)'= cos(x)</math> | ||
<math>f(cos x)'= -sin(x)</math> | <math>f(cos x)'= -sin(x)</math> | ||
Line 59: | Line 61: | ||
<math>f({cos x \over sin x})'= {-{sin}^2 x - {cos}^2 x \over {sin}^2 x} </math> | <math>f({cos x \over sin x})'= {-{sin}^2 x - {cos}^2 x \over {sin}^2 x} </math> | ||
but | but | ||
<math> -{sin}^2 x - {cos}^2 x = -1 </math> | <math> -{sin}^2 x - {cos}^2 x = -1 </math> | ||
so | so | ||
<math>f({cos x \over sin x})'= {-1 \over {sin}^2 x} </math> | <math>f({cos x \over sin x})'= {-1 \over {sin}^2 x} </math> | ||
Line 140: | Line 146: | ||
<math>{sin x \over cos x} = tan x </math> | <math>{sin x \over cos x} = tan x </math> | ||
<math>{1 \over cos x} = sec x </math> | <math>{1 \over cos x} = sec x </math> | ||
</noinclude> |
Latest revision as of 06:33, 17 September 2021
How do we get the equation
and you only can tell by looking at the graph so we will skip it to.
tan x
So we will started with
We know that If you have learn trigonometry then.
by using the Quotient Rule
need to know that
cot x
why did
first start with
so
by using the Quotient Rule
but
so
csc x
why did
In trigonometry
so
by using the Quotient Rule
g = sin x
f = 1
need to know (1)'= 0
and (sin x)' = cos x
so
next
In trigonometry
so
Sec x
why did
In trigonometry
so we can say that
by using the Quotient Rule
g = cos x
f = 1
so
In trigonometry