Difference between revisions of "Solve Differential Equation by means of Separating Variables"
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
==Examples== | ==Examples== | ||
====Example==== | |||
Ex1 <math> {dy \over dx} = {x^2 \over y^2}</math> | Ex1 <math> {dy \over dx} = {x^2 \over y^2}</math> | ||
Line 21: | Line 22: | ||
====Example 2==== | |||
Ex2 y' = xy | Ex2 y' = xy | ||
<math> {dy \over dx} = xy</math> | <math> {dy \over dx} = xy</math> | ||
Line 34: | Line 35: | ||
<math> \int x * dx = {x^2 \over 2} + c</math> | <math> \int x * dx = {x^2 \over 2} + c</math> | ||
==reference== | ==reference== | ||
https://www.youtube.com/watch?v=C7nuJcJriWM&list=PLEjLk3Wl8akWPgisw-u9jrmdN67dgPibe&index=33 | https://www.youtube.com/watch?v=C7nuJcJriWM&list=PLEjLk3Wl8akWPgisw-u9jrmdN67dgPibe&index=33 |
Revision as of 14:09, 28 September 2021
Examples
Example
Ex1
But one side of the equation needs to add a constant c.
constant times 3 will still be constant so 3c-> c.
Example 2
Ex2 y' = xy
reference
https://www.youtube.com/watch?v=C7nuJcJriWM&list=PLEjLk3Wl8akWPgisw-u9jrmdN67dgPibe&index=33