Difference between revisions of "Solve Differential Equation by means of Separating Variables"
Jump to navigation
Jump to search
(5 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Examples== | ==Examples== | ||
Ex1 <math> { | Ex1 <math> {dy \over dx} = {x^2 \over y^2}</math> | ||
<math> y^2 * dy = x^2 * dx</math> | <math> y^2 * dy = x^2 * dx</math> | ||
<math>{\int y^2 * dy }={ \int x^2 * dx}</math> | <math>{\int y^2 * dy } = { \int x^2 * dx}</math> | ||
<math>{\int y^2 * dy } = { y^3 \over 3}</math> | |||
<math>{ \int x^2 * dx} = { x^3 \over 3}</math> | |||
But one side of the equation needs to add a constant c. | |||
<math>{ y^3 \over 3} = { x^3 \over 3} + c</math> | |||
<math> y^3 = x^3 + 3c</math> | |||
constant times 3 will still be constant so 3c-> c. | |||
<math> \sqrt[3] {y^3}. = \sqrt[3] {x^3 + c}</math> | |||
Ex2 y' = xy | |||
<math> {dy \over dx} = xy</math> | |||
<math> dy = xy * dx</math> | |||
<math> {dy \over y} = x * dx</math> | |||
<math>\int {1 \over y} dy = \int x * dx</math> | |||
<math>\int {1 \over y} dy = ln|y|</math> | |||
<math> \int x * dx = {x^2 \over 2} + c</math> | |||
==reference== | |||
https://www.youtube.com/watch?v=C7nuJcJriWM&list=PLEjLk3Wl8akWPgisw-u9jrmdN67dgPibe&index=33 |
Latest revision as of 14:09, 28 September 2021
Examples
Ex1
But one side of the equation needs to add a constant c.
constant times 3 will still be constant so 3c-> c.
Ex2 y' = xy
reference
https://www.youtube.com/watch?v=C7nuJcJriWM&list=PLEjLk3Wl8akWPgisw-u9jrmdN67dgPibe&index=33