Difference between revisions of "Dana Scott on Lambda Calculus"
Line 38: | Line 38: | ||
=Lecture 3= | =Lecture 3= | ||
This lecture<ref name="Scott Part 3">{{:Video/Dana Scott - Theory and Models of Lambda Calculus Untyped and Typed - Part 3 of 5 - λC 2017}}</ref> starts to mention the notion of [[algebraic closure]] and [[fixed point]]s. | This lecture<ref name="Scott Part 3">{{:Video/Dana Scott - Theory and Models of Lambda Calculus Untyped and Typed - Part 3 of 5 - λC 2017}}</ref> starts to mention the notion of [[algebraic closure]] and [[fixed point]]s. | ||
=Lecture 4= | |||
This lecture<ref name="Scott Part 4">{{:Video/Dana Scott - Theory and Models of Lambda Calculus Untyped and Typed - Part 4 of 5 - λC 2017}}</ref> mentioned three important persons in logic. | |||
#John Myhill | |||
#John Sheperdson | |||
#Hartley Rogers Jr. | |||
<noinclude> | <noinclude> | ||
=References= | =References= | ||
<references/> | <references/> |
Revision as of 03:45, 20 January 2022
Prof. Dana Scott gave a few talks on Lambda Calculus, and some of them are available on Youtube.
A list of them can be found here:
This video series seems to be taken in the same day, a total of 5 hours. Prof. Scott offered many anecdotal insights on how calculus was invented and formed. It directly relates to the notion of function and combinators. Particularly, the SK Combinators.
Lecture 1
This starting lecture talks about the name of Lambda came from[1].
Lecture 2
Godel Numbering
Think about variables in terms of special numbers. This is an insight from Godel[2]Cite error: Invalid <ref>
tag; invalid names, e.g. too many, and later utilized to created Universal computation.
We don't need Turing Machine
In this lectureCite error: Invalid <ref>
tag; invalid names, e.g. too many, Scott explicitly stated that:
"You don't need Turing Machine to understand it, I hope I can convince you of that."
Scott's Universe is the Powerset of Integers
In this lectureCite error: Invalid <ref>
tag; invalid names, e.g. too many, Scott explicitly stated that:
"The Universe if the Powerset of Integers."
Sophomores or Juniors should learn some Topology
Sophomores or juniors should have some topology from calculus...
A neighborhood of a possibly infinite set...
- The neighborhood of a possibly infinite set is just determined by a finite subset... and its complement
- A stronger topology, called product topology, where its complement can also be expressed with finite information... Hausdorf set taking half the topology
Once you define Topology, you may define continuous functions
- Define Continuous Functions
- The main difficulty is that there are two quantifiers, forming a rational number
- Finite amount of information can only be represented by a finite amount of rational numbers
Lecture 3
This lecture[3] starts to mention the notion of algebraic closure and fixed points.
Lecture 4
This lecture[4] mentioned three important persons in logic.
- John Myhill
- John Sheperdson
- Hartley Rogers Jr.
References
- ↑ Scott, Dana (Oct 12, 2017). Dana Scott - Theory and Models of Lambda Calculus Untyped and Typed - Part 1 of 5 - λC 2017. local page: LambdaConf.
- ↑ Scott, Dana (Oct 12, 2017). Dana Scott - Theory and Models of Lambda Calculus Untyped and Typed - Part 2 of 5 - λC 2017. local page: LambdaConf.
- ↑ Scott, Dana (Oct 12, 2017). Dana Scott - Theory and Models of Lambda Calculus Untyped and Typed - Part 3 of 5 - λC 2017. local page: LambdaConf.
- ↑ Scott, Dana (Oct 12, 2017). Dana Scott - Theory and Models of Lambda Calculus Untyped and Typed - Part 4 of 5 - λC 2017. local page: LambdaConf.