Difference between revisions of "STP"

From PKC
Jump to navigation Jump to search
(Redirected page to Semi-Tensor Product)
Tag: New redirect
 
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
#REDIRECT [[Semi-Tensor Product]]
[[Semi-tensor product]] ([[STP]]) is a mathematical operator invented by [[Daizhan Cheng]]. Related publications are listed here.
# [[Paper/矩阵半张量积的基本原理与适用领域|矩阵半张量积的基本原理与适用领域]]<ref>{{:Paper/矩阵半张量积的基本原理与适用领域}}</ref>
# [[Book/Analysis and Control of Boolean Networks A Semi-tensor Product Approach|Analysis and Control of Boolean Networks A Semi-tensor Product Approach]]<ref>{{:Book/Analysis and Control of Boolean Networks A Semi-tensor Product Approach}}</ref>
# [[Paper/A BRIEF TUTORIAL EXPOSITION OF SEMI-TENSOR PRODUCTS OF MATRICES|A BRIEF TUTORIAL EXPOSITION OF SEMI-TENSOR PRODUCTS OF MATRICES]]<ref>{{:Paper/A BRIEF TUTORIAL EXPOSITION OF SEMI-TENSOR PRODUCTS OF MATRICES}}</ref>
# [[Paper/布尔网络的分析与控制 — 矩阵半张量积方法|布尔网络的分析与控制 — 矩阵半张量积方法]]<ref>{{:Paper/布尔网络的分析与控制 — 矩阵半张量积方法}}</ref>
 
[[David Spivak]] also presented a paper<ref>{{:Paper/Pixel Arrays: A fast and elementary method for solving nonlinear systems}}</ref><ref>{{:Paper/Evaluating the Pixel Array Method as Applied to Partial Differential Equations}}</ref> called:[[Paper/Pixel Arrays: A fast and elementary method for solving nonlinear systems|Pixel Arrays: A fast and elementary method for solving nonlinear systems]].
<noinclude>
=References=
<references/>
=Related Pages=
[[Category:Tensor]]
[[Category:Data Science]]
</noinclude>

Latest revision as of 05:16, 25 February 2022

Semi-tensor product (STP) is a mathematical operator invented by Daizhan Cheng. Related publications are listed here.

  1. 矩阵半张量积的基本原理与适用领域[1]
  2. Analysis and Control of Boolean Networks A Semi-tensor Product Approach[2]
  3. A BRIEF TUTORIAL EXPOSITION OF SEMI-TENSOR PRODUCTS OF MATRICES[3]
  4. 布尔网络的分析与控制 — 矩阵半张量积方法[4]

David Spivak also presented a paper[5][6] called:Pixel Arrays: A fast and elementary method for solving nonlinear systems.

References

  1. "矩阵半张量积的基本原理与适用领域". 系统科学与数学. local page: 中国科学院数学与系统科学研究院. 32 (12): 1488-1496. 2012. doi:10.12341/jssms12028. 
  2. Cheng, Daizhan; Qi, Hongsheng; Li, Zhiqiang (2011). Analysis and Control of Boolean Networks:A Semi-tensor Product Approach. local page: Springer-Verlag. ISBN 978-0-85729-097-7. 
  3. Rushdi, Ali Muhammad; Ghaleb, Fares (August 28, 2017). "A BRIEF TUTORIAL EXPOSITION OF SEMI-TENSOR PRODUCTS OF MATRICES". local page: Research Gate. 
  4. "布尔网络的分析与控制 — 矩阵半张量积方法" (PDF). 自动化学报. local page. 37 (5): 529-540. May 2011. 
  5. Spivak, David; Dobson, Magdalen R. C.; Kumari, Sapna; Wu, Lawrence (May 14, 2017). "Pixel Arrays: A fast and elementary method for solving nonlinear systems" (PDF). local page: arXiv. 
  6. Liu, Cynthia; Spivak, David (Aug 6, 2018). "Evaluating the Pixel Array Method as Applied to Partial Differential Equations" (PDF). local page: arXiv. 

Related Pages