Difference between revisions of "Reversible computing"
Jump to navigation
Jump to search
(Created page with "{{WikiEntry|key=Reversible Computing|qCode=185410}} is a model of computing. Category:Computational Model") |
|||
(7 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{{WikiEntry|key=Reversible | {{WikiEntry|key=Reversible computing|qCode=185410}}, a.k.a. [[reversible logic]], is a kind of [[logic]] that keeps information symmetry before and after a logic inference operation. | ||
=References= | |||
* {{:Paper/Computers That Can Run Backwards}} | |||
* {{cite journal |last1=Lange |first1=Klaus-Jörn |last2=McKenzie |first2=Pierre |last3=Tapp |first3=Alain |title=Reversible Space Equals Deterministic Space |journal=Journal of Computer and System Sciences |date=April 2000 |volume=60 |issue=2 |pages=354–367}} | |||
* Perumalla K. S. (2014), ''Introduction to Reversible Computing'', [[CRC Press]]. | |||
* {{cite book |doi=10.1145/1062261.1062335 |chapter=Time, space, and energy in reversible computing |title=Proceedings of the 2nd conference on Computing frontiers - CF '05 |year=2005 |last1=Vitányi |first1=Paul |pages=435 |isbn=1595930191 }} | |||
[[Category:Logic]] [[Category:Symmetry]] [[Category:Reversible computing]] | |||
[[Category:Computational Model]] | [[Category:Computational Model]] |
Latest revision as of 14:07, 19 March 2022
Reversible computing(Q185410), a.k.a. reversible logic, is a kind of logic that keeps information symmetry before and after a logic inference operation.
References
- Denning, Peter; Lewis, Ted (2017). "Computers That Can Run Backwards". American Scientist. local page. 105 (5): 270. doi:10.1511/2017.105.5.270.
- Lange, Klaus-Jörn; McKenzie, Pierre; Tapp, Alain (April 2000). "Reversible Space Equals Deterministic Space". Journal of Computer and System Sciences. 60 (2): 354–367.
- Perumalla K. S. (2014), Introduction to Reversible Computing, CRC Press.
- Vitányi, Paul (2005). "Time, space, and energy in reversible computing". Proceedings of the 2nd conference on Computing frontiers - CF '05. p. 435. ISBN 1595930191. doi:10.1145/1062261.1062335.