Difference between revisions of "Monoidal category"

From PKC
Jump to navigation Jump to search
Line 3: Line 3:
{{:Monoidal Category as a Two Dimensional Algebra}}
{{:Monoidal Category as a Two Dimensional Algebra}}


=Monoidal Categories in Visual Representations=
[[Peter Selinger]] has a paper called: [[Paper/A survey of graphical languages for monoidal categories|A survey of graphical languages for monoidal categories]]<ref>{{:Paper/A survey of graphical languages for monoidal categories}}</ref>.
There are a few variations of monoidal categories:
There are a few variations of monoidal categories:



Revision as of 11:17, 21 March 2022

Monoidal category(Q1945014) is a category that admits tensor products. It is an important construct that has significant applications in various fields. In particularly, Bob Coecke's work on Picturing Quantum Processes[1] and Quantum Natural Language Processing[2] make extensive use of Monoidal Category. That means it has direct application to compilation and interpretation of complex information systems, that covers almost any engineered system of practical interesting. Richard Borcherds has a video on Monoidal Category[3].

Monoidal Category as a Two Dimensional Algebra?

Daniel Tubbenhauer's VisualMath also has a video on What are…monoidal categories?[4]. At the end of the video, he stated that Monoidal Category can be used as a way to model a Two-Dimensional Algebra.


Content related to Monoidal Category:

Content Link


Monoidal Categories in Visual Representations

Peter Selinger has a paper called: A survey of graphical languages for monoidal categories[5]. There are a few variations of monoidal categories:

Symmetrical Monoidal Category

Braided Monoidal Category

References

Related Pages