Difference between revisions of "G COUNTING 6 : Fraction"

From PKC
Jump to navigation Jump to search
(Blanked the page)
Tag: Blanking
 
(318 intermediate revisions by the same user not shown)
Line 1: Line 1:
__TOC__


= Gasing Counting Introduction =
Matematika selama ini telah menjadi mata pelajaran yang '''ditakuti''' banyak siswa. Siswa kesulitan ketika mengerjakan soal-soal matematika karena lemahnya kemampuan konsep matematika mereka. Untuk itu diperlukan suatu cara agar siswa '''tertarik''' dengan matematika dan dapat belajar matematika dengan mudah.
Oleh karena itu Prof.Yohanes Surya, Ph.D di Surya Institute mengembangkan metode pembelajaran matematika yang dinamakan metode '''Gasing''' (GAmpang, aSyIk, MenyenaNGkan). Pembelajaran Matematika Gasing dibuat secara bertahap, bertingkat dan berlanjut,  dari konsep yang termudah hingga tersulit. Dengan cara ini  siswa lebih  mudah memahami matematika dan menemukan sendiri “AHA”-nya. Lewat metode Gasing ini diharapkan jutaan anak-anak Indonesia menjadi pandai berhitung dan tidak lagi takut dengan matematika.
Modul pertama ini disusun untuk memberi bimbingan pada orangtua atau pendidik bagaimana mengajar berhitung GASING yang meliputi BAKAL KUBAGI (penjumlahan atau penamBAhan, perKALian, pengurangan atau KUrang dan pemBAGIan). Pada Modul kedua nanti kita akan belajar GASING untuk materi PEDE (PEcahan dan DEsimal). Seorang yang mampu menguasai BAKAL KUBAGI PEDE akan mampu belajar matematika dengan sangat mudah. 
Ucapan terima kasih tak lupa kami sampaikan kepada semua pihak yang telah membantu terselesaikannya modul ini. Akhirnya, saran dan masukan berkaitan dengan modul ini dapat disampaikan kepada penyusun melalui situs [http://www.kandel.co.id/ Kandel].
Tim Penyusun
= Meaning GASING =
'''Arti Metode GASING'''
'''Metode''' adalah cara (langkah demi langkah) untuk mencapai suatu hasil. GASING adalah GAmpang, aSIk, dan menyenaNGkan. Jadi Metode GASING berhitung adalah langkah demi langkah pembelajaran berhitung secara gampang, asik dan menyenangkan.
Pembelajaran Berhitung Gasing dibuat berurutan dari konsep yang termudah hingga tersulit sehingga siswa dapat dengan mudah memahami matematika dan menemukan sendiri “AHA”-nya.
Beberapa hal '''penting''' dalam metode Gasing
*'''Konkret''' - Abstrak
:Setiap materi pembelajaran Gasing selalu dimulai dengan sesuatu yang kongkret, sesuatu yang mudah divisualisasikan. Hal yang konkret ini membuat siswa lebih mudah mengerti. Tanpa bisa membayangkan lebih sulit bagi siswa untuk belajar suatu mata pelajaran.
:Misalnya seorang berkata cinq + vier = enea. Sulit bagi kita mengingat atau mengerti maksudnya.  Tetapi kalau ia menunjukan jari 5 sambil berkata cinq (bahasa perancis), lalu menunjukan jari 4 sambil berkata vier (bahasa Jerman) dan menunjukan hasilnya adalah sembilan jari sambil berkata enea (bahasa yunani), maka siswa bisa mengerti lebih mudah. 
:Setelah belajar kongkretnya, kita mengajarkan abstraknya, misalnya 5 + 4 = 9.
*'''Mencongak'''
:Perhitungan dengan metode Gasing sebagian besar dilakukan dengan mencongak. Mencongak bukan berarti menghafal, tetapi mengerti sehingga mampu melakukan perhitungan secara mencogak.
:Misalnya 19 x 3 sama dengan 1 puluhan x 3 satuan hasilnya adalah 3 puluhan, kemudian 9 satuan dikali 3 satuan hasilnya adalah 27 satuan yang merupakan 2 puluhan dan 7 satuan. Puluhannya digabung menjadi 3 + 2 = 5. Satuannya tetap 7. Sehingga hasilnya adalah 57.
:Agar lebih mudah menghitung secara mencongak maka perhitungan BAKAL KUBAGI selalu dimulai dari '''kiri ke kanan''' bukan dari kanan ke kiri seperti yang selama ini kita ajarkan.
*'''Bertahap'''
:Belajar Gasing adalah belajar setahap demi setahap. Misalnya untuk menguasai penjumlahan 5 digit dengan 5 digit tahapan yang perlu dilakukan adalah
:** menguasai arti bilangan 1-5
:** menguasai penjumlahan yang hasilnya 2 sampai 5
:** menguasai arti bilangan 6 - 10
:** menguasai penjumlahan yang hasilnya 6 sampai 10
:** dst
[[Image:Screen Shot 2022-02-03 at 05.40.51.png|400px]]
*'''Bertingkat'''
:Disamping bertahap, pembelajaran Gasing dibuat bertingkat. Tingkat pertama adalah Penjumlahan.  Setelah menguasai penjumlahan, siswa baru bisa masuk ke perkalian. Kita tidak bisa mengajarkan perkalian tanpa lewat penjumlahan. Demikian juga pengurangan dapat dipelajari kalau sudah menguasai penjumlahan.  Pembagian hanya dapat dikuasai setelah menguasai penjumlahan, perkalian dan pengurangan. Tingkatan-tingkatan yang akan kita pelajari dalam berhitung ini adalah
**Penjumlahan
**Perkalian
**Pengurangan
**Pembagian
**Bilangan bulat
**Pecahan
**Desimal
[[Image:Screen Shot 2022-02-08 at 13.48.14.png|800px]]
*'''Berlanjut'''
: Setelah menguasai Gasing berhitung, kita bisa lanjut ke soal cerita, soal teka-teki berhitung atau berbagai aplikasi seperti menghitung luas, kecepatan, perbandingan dsb.
*'''Titik Kritis'''
Dalam setiap tingkatan ada titik kritisnya. Titik kritis  adalah keadaan dimana siswa sudah memahami dengan baik konsep-konsep dasar dari suatu tingkatan.  Siswa yang telah mencapai titik kritis akan mampu menguasai konsep lanjutan dari tingkatan itu secara mudah.
Sebagai contoh : ‘’’titik kritis penjumlahan’’’ adalah penjumlahan yang hasilnya dibawah 20.  Jadi untuk semua siswa yang sudah mampu menjumlahkan bilangan yang hasilnya kurang dari 20 sudah siap untuk melanjutkan pada konsep lanjutan penjumlahan seperti penjumlahan 2 digit, penjumlahan 3 digit dsb.
[[Image:Screen Shot 2022-02-08 at 14.14.26.png|300px|link=File:Screen Shot 2022-02-08 at 14.14.26.png]]
*'''Banyak Latihan'''
Siswa diberikan soal Latihan setelah siswa mampu mencongak. Jadi Latihan yang banyak adalah untuk meningkatkan kemampuan motorik siswa, bagaimana menuliskan apa yang ada diotak dalam bentuk tulisan tangan.  Soal Latihan yang banyak juga untuk melatih ‘’’endurance’’’ anak.  Mereka harus mengerjakan soal secara cepat misalnya 120 soal dalam waktu 3 menit, ini bermanfaat untuk melatih ‘’’konsentrasi’’’ mereka dan membiasakan bekerja secara cepat dan meningkatkan kerja otak.
Latihan yang banyak dengan waktu yang cepat dapat meningkatkan kecerdasan (IQ) juga dan membuat siswa semakin mahir berhitung.
Perhatikan disini langkah demi langkah Gasing:
Kongkret → mencongak → berlatih dengan tulisan.
*'''Banyak memuji'''
Selama proses belajar pengajar harus banyak memuji anak untuk progress sekecil apapun juga. Pujian ini akan mendorong anak untuk belajar dan belajar lebih banyak.
Pujian ini akan meningkatkan percaya diri siswa sehingga otak siswa akan bekerja lebih baik.
Pujian akan membuat anak merasa dihargai dan ini membuat anak lebih mencintai matematika (ia merasa bahwa di ‘matematika’ lah ia dipuji dan dihargai).
Pujian bisa dilakukan secara dengan kata-kata seperti “kamu hebat sekali ya…”, “kamu makin lama makin hebat ya…” , “kamu ini luar biasa sekali”, “kamu akan jadi professor matematika yang sangat hebat…” dsb.
Atau pujian ini juga bisa diberikan secara tertulis pada hasil kerja mereka. Seperti begitu mereka selesai menjawab 120 soal dalam 3 menit, kita tulis “wah luar biasa sekali Emon, kamu hebat sekali…”
dsb..
*'''Mengajar dengan hati'''
Mengajar yang berhasil adalah ketika kita bisa menyamakan frekuensi irama berpikir otak kita dengan irama berpikir anak, kemudian sedikit demi sedikit kita bawa anak itu berfikir dengan frekuensi kita.
Teknik ini sangat powerful.
Untuk melakukan Teknik ini kita perlu mengajar dengan hati. Kita harus anggap siswa kita adalah makhluk Tuhan yang perlu kita latih sehingga pandai.  Kita harus mengajar dengan hati yang tulus dan semangat ingin agar anak ini bisa pandai.
*'''Mengajar dengan musik/lagu'''
Indonesia adalah negara yang mencintai musik. Hampir tiap daerah punya lagu-lagu daerahnya masing-masing. Ketika kita mengajar matematika dengan lagu, siswa akan lebih senang dan lebih menangkap apa yang kita ajarkan.
Lagu yang dikombinasikan dengan Gerakan dan matematika akan melatih otak kanan dan otak kiri secara bersama-sama dan ini akan menghasilkan efek yang luar biasa pada sang anak. Anak lebih cekatan, lebih cerdas dan lebih kreatif.
*'''Kecerdasan 6C'''
Dari penjelasan diatas dapat disimpulkan bahwa GASING itu mengembangkan kecerdasan 6C: Communication, Collaboration, Creativity, Compassion, Critical Thinking, Computational Logic
= Gasing Fraction =
Pada pelajaran pecahan ini titik gasinya adalah siswa mampu mengerjakan 4 jenis operasi ini secara cepat.
[[Image:Screen Shot 2022-02-11 at 17.53.17.png|400px]]
Langkah-langkah untuk menuju ini adalah sebagai berikut
[[Image:Screen Shot 2022-02-11 at 17.53.24.png|400px]]
# Arti pecahan
# Pecahan senilai dan penyederhanaan pecahan
# Penjumlahan dan pengurangan pecahan dengan penyebut yang sama atau  berbeda
# Konsep ‘SATU’ dan pecahan adalah bagi
# Pecahancampuran
# Titik kritis GASING
== Fraction concept ==
:Ada SATU semangka dipotong menjadi 2 bagian yang sama besar.
:1 potong semangka kita sebut <small><math>\frac{1}{2} </math></small> semangka.
: <small><math>\frac{1}{2} </math></small> dinamakan bilangan pecahan.
:<small><math>\frac{1}{2} </math></small> diartikan sebagai '''satu bagian''' dari satu kelompok yang terdiri dari '''2 bagian''' yang sama besar.
:<small><math>\frac{1}{2} </math></small> dibaca <nowiki>“1 garis 2”</nowiki> atau  <nowiki>“1 per 2”</nowiki>.
:Angka yang diatas dinamakan '''pembilang'''
:Angka yang dibawah dinamakan '''penyebut'''
[[Image:Screen Shot 2022-02-11 at 17.53.31.png|400px]]
:Batang biru dibagi dua sama besar.
:Jika batang biru ini  bernilai 1
:maka satu potong batang biru bernilai <small><math>\frac{1}{2} </math></small>
[[Image:Screen Shot 2022-02-11 at 17.53.37.png|400px]]
:Potongan kuning atau potongan merah '''tidak bernilai''' <small><math>\frac{1}{2} </math></small> karena bendanya tidak dipotong sama besar.
[[Image:Screen Shot 2022-02-11 at 17.53.44.png|400px]]
:Batang kuning dibagi menjadi 3 bagian sama besar
: Tiap bagian bernilai <small><math>\frac{1}{3} </math></small>
:<small><math>\frac{1}{3} </math></small> artinya '''1 bagian''' dari satu kelompok yang terdiri dari '''3 bagian''' yang sama besar.
[[Image:Screen Shot 2022-02-11 at 17.53.50.png|400px]]
:Batang ungu dibagi menjadi 4 bagian sama besar
: Tiap bagian bernilai <small><math>\frac{1}{4} </math></small>
:<small><math>\frac{1}{4} </math></small> artinya '''1 bagian''' dari satu kelompok yang terdiri dari '''4 bagian''' yang sama besar.
[[Image:Screen Shot 2022-02-11 at 17.53.55.png|400px]]
:1 Lingkaran dibagi menjadi 8 bagian sama besar
:Bagian yang berwarna kuning bernilai <small><math>\frac{3}{8} </math></small>
:<small><math>\frac{3}{8} </math></small> artinya '''3 bagian''' dari satu kelompok yang terdiri dari '''8 bagian''' yang sama besar.
Pada gambar dibawah ini sebutkan nilai potongan benda yang diberi warna
[[Image:Screen Shot 2022-02-11 at 17.54.03.png|400px]]
== Fraction equal value ==
== Simplify Fraction ==
== Addition Fraction with same denominator ==
== Substraction Fraction with same denominator ==
== concept ONE ==
== Fraction is division ==
== compound Fraction ==
== Addition compound Fraction model 1 ==
== Addition compound Fraction model 2 ==
== Addition compound Fraction model 3 ==
== Addition compound Fraction model 4 ==
== Multiplication Fraction with whole number ==
== Multiplication compound Fraction ==
== Division Fraction with whole number ==
== Division compound Fraction ==

Latest revision as of 07:34, 15 May 2022