Difference between revisions of "GABER Pecahan"

From PKC
Jump to navigation Jump to search
 
(27 intermediate revisions by the same user not shown)
Line 1: Line 1:


= Gasing Berhitung: Pecahan  =
= Gasing Berhitung: Pecahan  =
Line 258: Line 257:




Gambar ini adalah pecahan <small><math>\frac{2}{8} </math></small>
Gambar ini adalah pecahan <small><math>\frac{2}{8}</math></small>
 
 
:: [[Image:Screen Shot 2022-02-19 at 05.38.11.png|200px]]
 
:: <small><math>\frac{2}{8}</math></small>  menunjukan nilai 2 bagian dari suatu kelompok yang terdiri dari 8 bagian yang sama nilainya


[[Image:Screen Shot 2022-02-19 at 05.38.11.png|200px]]
:: Kemudian kita tambahkan  <small><math>\frac{2}{8}</math></small>


:: <small><math>\frac{2}{8} </math></small> menunjukan nilai 2 bagian dari suatu kelompok yang terdiri dari 8 bagian yang sama nilainya
:: Kemudian kita tambahkan  <small><math>\frac{1}{8}</math></small>  


: Kemudian kita tambahkan <small><math>\frac{2}{8} </math></small> dengan <small><math>\frac{1}{8} </math></small>


[[Image:Screen Shot 2022-02-19 at 05.38.22.png|300px]]
:: [[Image:Screen Shot 2022-02-19 at 05.38.22.png|300px]]


Hasilnya dengan mudah terlihat <small><math>\frac{3}{8} </math></small>  
:: Hasilnya dengan mudah terlihat <small><math>\frac{3}{8}</math></small>  


[[Image:Screen Shot 2022-02-19 at 05.38.32.png|400px]]
:: [[Image:Screen Shot 2022-02-19 at 05.38.32.png|400px]]


:: <small><math>\frac{3}{8} </math></small>  menunjukan 3 bagian dari suatu kelompok yang terdiri dari 8 bagian yang sama nilainya.
:: <small><math>\frac{3}{8}</math></small>  menunjukan 3 bagian dari suatu kelompok yang terdiri dari 8 bagian yang sama nilainya.


Contoh lain:
Contoh lain:
Line 350: Line 353:
Mengerjakan Latihan 14 dari buku Pecahan  (buku 4)
Mengerjakan Latihan 14 dari buku Pecahan  (buku 4)


== Concept ONE ==
== Konsep SATU ==


Berapa separuh jeruk ditambah separuh jeruk?
Ini 1 jeruk, kita potong menjadi 2 bagian yang sama besar.


[[Image:Screen Shot 2022-02-19 at 06.55.46.png|300px]]
[[Image:Screen Shot 2022-02-19 at 06.55.46.png|300px]]


:: Jawabnya 1 jeruk
Satu bagian jeruk ini nilainya adalah  <small><math>\frac{1}{2} </math></small> jeruk.
 
:: Separuh jeruk + separuh jeruk = 1 jeruk


Karena separuh itu kita bisa tulis <small><math>\frac{1}{2} </math></small>
Karena itu maka


:: Maka kita bisa tulis
:: <small><math>\frac{1}{2} </math></small> (jeruk) + <small><math>\frac{1}{2} </math></small> (jeruk) = 1 (jeruk)
:: <small><math>\frac{1}{2} </math></small> (jeruk) + <small><math>\frac{1}{2} </math></small> (jeruk) = 1 (jeruk)


Kita bisa juga tulis
Atau kita hilangkan konteksnya, kita peroleh


:: <small><math>\frac{1}{2} </math></small>  + <small><math>\frac{1}{2} </math></small>  = 1  
:: <small><math>\frac{1}{2} </math></small>  + <small><math>\frac{1}{2} </math></small>  = 1  
Line 381: Line 381:


Contoh lain
Contoh lain
Kita punya 1 batang kuning, kemudian batang itu kita potong menjadi 4 bagian yang sama nilainya.


:Berapa seperempat batang kuning  ditambah seperempat batang kuning ditambah seperempat batang kuning ditambah seperempat batang kuning ?
:Berapa seperempat batang kuning  ditambah seperempat batang kuning ditambah seperempat batang kuning ditambah seperempat batang kuning ?
Line 408: Line 410:




Jadi bisa disimpulkan bahwa dalam konteks pecahan arti bilangan 1 adalah sebagai berikut
Jadi bisa disimpulkan bahwa dalam pecahan arti bilangan 1 adalah sebagai berikut
:: 1 adalah nilai 2 bagian dari satu kelompok yang terdiri dari 2 bagian yang sama besar.
:: 1 adalah nilai 2 bagian dari satu kelompok yang terdiri dari 2 bagian yang sama nilainya.
:: 1 adalah nilai 3 bagian dari satu kelompok yang terdiri dari 3 bagian yang sama besar.
:: 1 adalah nilai 3 bagian dari satu kelompok yang terdiri dari 3 bagian yang sama nilainya.
:: 1 adalah nilai 5 bagian dari satu kelompok yang terdiri dari 5 bagian yang sama besar.
:: 1 adalah nilai 5 bagian dari satu kelompok yang terdiri dari 5 bagian yang sama nilainya.


Video berikut ini menjelaskan konsep <nowiki>"satu'</nowiki>
Video berikut ini menjelaskan konsep <nowiki>"satu'</nowiki>
Line 429: Line 431:
Mengerjakan Latihan 5 dari buku Pecahan  (buku 4)
Mengerjakan Latihan 5 dari buku Pecahan  (buku 4)


== Pecahan adalah Bagi ==


 
:Apakah pecahan itu adalah bagi?
 
== Fraction and division ==
 
Kita sering mendengar bahwa pecahan itu sama dengan bagi.
:Apakah itu benar?  
:Apakah <small><math>\frac{1}{2} </math></small> = 1 ÷ 2 ?
:Apakah <small><math>\frac{1}{2} </math></small> = 1 ÷ 2 ?


Line 454: Line 452:


Menurut definisi pecahan,  
Menurut definisi pecahan,  
:: separuh atau setengah kue adalah nilai 1 bagian dari satu kue yang terdiri dari dua bagian yang sama besar.
:: separuh atau setengah kue menunjukan nilai 1 bagian dari satu kue yang terdiri dari dua bagian yang sama nilainya.
:: Ini ditulis <small><math>\frac{1}{2} </math></small> kue
:: Ini ditulis <small><math>\frac{1}{2} </math></small> kue


Line 513: Line 511:
Mengerjakan Latihan 7 dari buku Pecahan  (buku 4)
Mengerjakan Latihan 7 dari buku Pecahan  (buku 4)


== Compound Fraction ==
== Pecahan Majemuk ==


Berapa <small><math>\frac{2}{3}</math></small> +  <small><math>\frac{2}{3}</math></small>?
Berapa <small><math>\frac{2}{3}</math></small> +  <small><math>\frac{2}{3}</math></small>?
Line 541: Line 539:


::<small><math>\frac{25}{23}</math></small> = <small><math>\frac{23}{23}</math></small> + <small><math>\frac{2}{23}</math></small> = 1<small><math>\frac{2}{23}</math></small>  
::<small><math>\frac{25}{23}</math></small> = <small><math>\frac{23}{23}</math></small> + <small><math>\frac{2}{23}</math></small> = 1<small><math>\frac{2}{23}</math></small>  
::<small><math>\frac{7}{2}</math></small> = <small><math>\frac{6}{2}</math></small> + <small><math>\frac{1}{2}</math></small> = 3<small><math>\frac{1}{2}</math></small>
::<small><math>\frac{11}{3}</math></small> = <small><math>\frac{9}{3}</math></small> + <small><math>\frac{2}{3}</math></small> = 3<small><math>\frac{2}{3}</math></small>




Line 561: Line 565:
Mengerjakan Latihan 6 dari buku Pecahan  (buku 4)
Mengerjakan Latihan 6 dari buku Pecahan  (buku 4)


== Operation (+ and -) Fraction with Different denominator ==
== Penjumlahan dan Pengurangan dengan Penyebut berbeda ==


Pada bagian ini kita akan melakukan operasi penjumlahan dan pengurangan dengan penyebut berbeda.
Pada bagian ini kita akan melakukan operasi penjumlahan dan pengurangan dengan penyebut berbeda.




=== Addition ===
=== Penjumlahan Pecahan ===




Line 574: Line 578:
:: Kita harus ubah penyebutnya sehingga sama.
:: Kita harus ubah penyebutnya sehingga sama.


Caranya
Bagaimana caranya?
:: <small><math>\frac{1}{2}</math></small> dijadikan <small><math>\frac{3}{6}</math></small>
:: <small><math>\frac{1}{3}</math></small> dijadikan <small><math>\frac{2}{6}</math></small>


Sehingga kita peroleh
Kita lihat konkretnya dulu


:: <small><math>\frac{1}{2}</math></small> + <small><math>\frac{1}{3}</math></small> =  <small><math>\frac{3}{6}</math></small> + <small><math>\frac{2}{6}</math></small> =  <small><math>\frac{5}{6}</math></small>
Ini ada batang <small><math>\frac{1}{2}</math></small> hendak ditambahkan dengan batang <small><math>\frac{1}{3}</math></small>.


Bagaimana kita tahu penyebutnya harus dijadikan 6?


:: 6 adalah bilangan yang bisa dibagi 2 dan bisa dibagi 3
[[Image: Screenshot_2023-12-28_at_08.39.51.png|400px]]
:: Karena itu kita pasti bisa mengubah pecahan <small><math>\frac{1}{2}</math></small> dan <small><math>\frac{1}{3}</math></small> menjadi pecahan dengan penyebut 6.


Bagaimana mendapatkan angka 6?
Agar kedua batang ini bisa dijumlahkan maka kelompoknya harus disamakan.


Cara termudah adalah  
Cara menyamakan kelompok adalah sebagai berikut:
:: Mengalikan penyebut pecahan yang dijumlahkan yaitu 3 x 2


Cara lain:
Pada pecahan <small><math>\frac{1}{2}</math></small>, tiap bagian kita potong menjadi 3 bagian yang identik. Sehingga kelompoknya menjadi kelompok 6.
:: Dengan mencari bilangan terkecil yang bisa dibagi 2 dan bisa dibagi 3.


Apakah penyebutnya boleh 12? Bukankah 12 juga bisa dibagi 2 atau dibagi 3?
Pada pecahan <small><math>\frac{1}{3}</math></small>, tiap bagian kita potong menjadi 2 bagian yang identik. Sehingga kelompoknya menjadi kelompok 6.
::Boleh namun hasilnya nanti kamu harus sederhanakan lagi


::<small><math>\frac{1}{2}</math></small> + <small><math>\frac{1}{3}</math></small> =  <small><math>\frac{6}{12}</math></small> + <small><math>\frac{4}{12}</math></small> =  <small><math>\frac{10}{12}</math></small> = <small><math>\frac{5}{6}</math></small>
Nah sekarang kedua pecahan mempunyai kelompok yang sama.


Kita boleh mengubah pecahan menjadi 6, 12, 18, 24 dsb. Tetapi sebaiknya ambil yang terkecil yaitu 6.
[[Image: Screenshot 2023-12-28 at 08.46.27.png|400px]]


Secara abstrak ini dituliskan


:: <small><math>\frac{1}{2}</math></small> dijadikan <small><math>\frac{3}{6}</math></small>
:: <small><math>\frac{1}{3}</math></small> dijadikan <small><math>\frac{2}{6}</math></small>


Bagaimana menghitung <small><math>\frac{1}{4}</math></small> + <small><math>\frac{1}{6}</math></small> = ?
Sehingga kita peroleh
:: Kita ubah penyebutnya menjadi 4 x 6 = 24


:: <small><math>\frac{1}{4}</math></small> + <small><math>\frac{1}{6}</math></small> =  <small><math>\frac{6}{24}</math></small> + <small><math>\frac{4}{24}</math></small> =  <small><math>\frac{10}{24}</math></small> = <small><math>\frac{5}{12}</math></small>
:: <small><math>\frac{1}{2}</math></small> + <small><math>\frac{1}{3}</math></small> =  <small><math>\frac{3}{6}</math></small> + <small><math>\frac{2}{6}</math></small> =  <small><math>\frac{5}{6}</math></small>
 
Atau
:: cari bilangan yang bisa dibagi 4 dan 6. Dalam hal ini bilangannya adalah 12, 24, 36 dsb.
:: Kita pilih bilangan yang terkecil yaitu 12.
 
:: <small><math>\frac{1}{4}</math></small> + <small><math>\frac{1}{6}</math></small> =  <small><math>\frac{3}{12}</math></small> + <small><math>\frac{2}{12}</math></small> =  <small><math>\frac{5}{12}</math></small>
 
 
 
Bagaimana dengan <small><math>\frac{2}{5}</math></small> + <small><math>\frac{3}{10}</math></small> = ?
 
:: kita ubah penyebutnya menjadi 5 x 10 = 50
 
:: <small><math>\frac{2}{5}</math></small> + <small><math>\frac{3}{10}</math></small> =  <small><math>\frac{20}{50}</math></small> + <small><math>\frac{15}{50}</math></small> =  <small><math>\frac{35}{50}</math></small> = <small><math>\frac{7}{10}</math></small>
 
Atau
:: Cari bilangan yang bisa dibagi 5 dan bisa dibagi 10. Dalam hal ini bilangannya adalah 10, 20, 30, 40 dst..
:: Kita pilih bilangan yang terkecil yaitu 10
 
:: <small><math>\frac{2}{5}</math></small> + <small><math>\frac{3}{10}</math></small> =  <small><math>\frac{4}{10}</math></small> + <small><math>\frac{3}{10}</math></small> =  <small><math>\frac{7}{10}</math></small>




Cara lain adalah menggunakan batang pecahan.
Cara Konkret lain adalah menggunakan Papan pecahan.


:: Misal kita akan menghitung <small><math>\frac{1}{2}</math></small> + <small><math>\frac{1}{3}</math></small> =   
:: Misal kita akan menghitung <small><math>\frac{1}{2}</math></small> + <small><math>\frac{1}{3}</math></small> =   


Ini adalah batang pecahan.  
Ini adalah Papan pecahan.  


[[Image:Screen Shot 2022-02-22 at 11.14.18.png|400px]]
[[Image:Screen Shot 2022-02-22 at 11.14.18.png|400px]]
Line 662: Line 641:




Cara lain (abstrak)  mendapat penyebut 6 untuk soal di atas.


Berikut ini adalah beberapa contoh penjumlahan pecahan  
Cara termudah adalah  
:: Mengalikan penyebut pecahan yang dijumlahkan yaitu 3 x 2
 
Cara lain:
:: Dengan mencari bilangan terkecil yang bisa dibagi 2 dan bisa dibagi 3.


{{#ev:YouTube
Apakah penyebutnya boleh 12? Bukankah 12 juga bisa dibagi 2 atau dibagi 3?
|id= 1iqMwdBkLf8
::Boleh namun hasilnya nanti kamu harus sederhanakan lagi
|width=640
|height=400
}}


::<small><math>\frac{1}{2}</math></small> + <small><math>\frac{1}{3}</math></small> =  <small><math>\frac{6}{12}</math></small> + <small><math>\frac{4}{12}</math></small> =  <small><math>\frac{10}{12}</math></small> = <small><math>\frac{5}{6}</math></small>


Kita boleh mengubah pecahan menjadi 6, 12, 18, 24 dsb. Tetapi sebaiknya ambil yang terkecil yaitu 6.








=== Addition (Quick way) ===
Bagaimana menghitung <small><math>\frac{1}{4}</math></small> + <small><math>\frac{1}{6}</math></small> = ?
:: Kita ubah penyebutnya menjadi 4 x 6 = 24


Perhatikan <small><math>\frac{2}{5}</math></small> + <small><math>\frac{3}{10}</math></small> =  
:: <small><math>\frac{1}{4}</math></small> + <small><math>\frac{1}{6}</math></small> =  <small><math>\frac{6}{24}</math></small> + <small><math>\frac{4}{24}</math></small> =  <small><math>\frac{10}{24}</math></small> = <small><math>\frac{5}{12}</math></small>


Penyebutnya dijadikan 5 x 10
Atau
:: cari bilangan yang bisa dibagi 4 dan 6. Dalam hal ini bilangannya adalah 12, 24, 36 dsb.
:: Kita pilih bilangan yang terkecil yaitu 12.


<math>
:: <small><math>\frac{1}{4}</math></small> + <small><math>\frac{1}{6}</math></small> <small><math>\frac{3}{12}</math></small> + <small><math>\frac{2}{12}</math></small> =   <small><math>\frac{5}{12}</math></small>
\begin{array}{lcl}
\frac{2}{5} + \frac{3}{10}       & = & \frac{2 \times 10}{5 \times 10} + \frac{5 \times 3}{5 \times 10} \\
& = & \frac{2 \times  10 + 5 \times 3}{5 \times 10}  
\end{array}
</math>






Lihat beberapa contoh berikut dan perhatikan polanya.
Bagaimana dengan <small><math>\frac{2}{5}</math></small> + <small><math>\frac{3}{10}</math></small> = ?


a) <small><math>\frac{4}{5}</math></small> + <small><math>\frac{2}{3}</math></small> =  
:: kita ubah penyebutnya menjadi 5 x 10 = 50


:Penyebutnya dijadikan 5 x 3
:: <small><math>\frac{2}{5}</math></small> + <small><math>\frac{3}{10}</math></small> =  <small><math>\frac{20}{50}</math></small> + <small><math>\frac{15}{50}</math></small> =  <small><math>\frac{35}{50}</math></small> = <small><math>\frac{7}{10}</math></small>


Atau
:: Cari bilangan yang bisa dibagi 5 dan bisa dibagi 10. Dalam hal ini bilangannya adalah 10, 20, 30, 40 dst..
:: Kita pilih bilangan yang terkecil yaitu 10


<math>
:: <small><math>\frac{2}{5}</math></small> + <small><math>\frac{3}{10}</math></small> <small><math>\frac{4}{10}</math></small> + <small><math>\frac{3}{10}</math></small> = <small><math>\frac{7}{10}</math></small>
\begin{array}{lcl}
 
\frac{4}{5} + \frac{2}{3}       & = & \frac{4 \times 3}{5 \times 3} + \frac{5 \times 2}{5 \times 3} \\
 
  & = & \frac{4 \times  3 + 5 \times 2}{5 \times 3}  
 
\end{array}
 
</math>
Berikut ini adalah beberapa contoh penjumlahan pecahan
 
{{#ev:YouTube
|id= 1iqMwdBkLf8
|width=640
|height=400
}}


1


b) <small><math>\frac{1}{2}</math></small> + <small><math>\frac{3}{4}</math></small> =  
=== Penjumlahan cepat  ===


:Penyebutnya dijadikan 2 x 4
Perhatikan <small><math>\frac{2}{5}</math></small> + <small><math>\frac{3}{10}</math></small> =


Penyebutnya dijadikan 5 x 10


<math>
<math>
\begin{array}{lcl}
\begin{array}{lcl}
\frac{1}{2} + \frac{3}{4}      & = &  \frac{1 \times 4}{2 \times 4} + \frac{2 \times 3}{2 \times 4} \\
\frac{2}{5} + \frac{3}{10}      & = &  \frac{2 \times 10}{5 \times 10} + \frac{3 \times 5}{10 \times 5} \\
  & = & \frac{1 \times  4 + 2 \times 3}{2 \times 4}  
  & = & \frac{20}{50}  +  \frac{15}{50}      \\
& = & \frac{35}{50} \\
& = & \frac{7}{10}  
\end{array}
\end{array}
</math>
</math>




c) <small><math>\frac{1}{3}</math></small> + <small><math>\frac{3}{5}</math></small> =


:Penyebutnya dijadikan 3 x 5
Lihat beberapa contoh berikut
 
a) <small><math>\frac{4}{5}</math></small> + <small><math>\frac{2}{3}</math></small> =
 
:Penyebutnya dijadikan 5 x 3




<math>
<math>
\begin{array}{lcl}
\begin{array}{lcl}
\frac{1}{3} + \frac{3}{5}      & = &  \frac{1 \times 5}{3 \times 5} + \frac{3 \times 3}{3 \times 5} \\
\frac{4}{5} + \frac{2}{3}      & = &  \frac{4 \times 3}{5 \times 3} + \frac{2 \times 5}{3 \times 5} \\
  & = & \frac{1 \times 5 + 3 \times 3}{3 \times 5}  
  & = & \frac{12}{15} +  \frac{10}{15}  \\
  & = & \frac{22}{15}  \\
& = &1 \frac{7}{15}  
 
\end{array}
\end{array}
</math>
</math>




d) <small><math>\frac{2}{5}</math></small> + <small><math>\frac{3}{7}</math></small> =  
b) <small><math>\frac{1}{2}</math></small> + <small><math>\frac{3}{4}</math></small> =  


:Penyebutnya dijadikan 5 x 7
:Penyebutnya dijadikan 2 x 4




<math>
<math>
\begin{array}{lcl}
\begin{array}{lcl}
\frac{2}{5} + \frac{3}{7}      & = &  \frac{2 \times 7}{5 \times 7} + \frac{5 \times 3}{5 \times 7} \\
\frac{1}{2} + \frac{3}{4}      & = &  \frac{1 \times 4}{2 \times 4} + \frac{3 \times 2}{4 \times 2} \\
  & = & \frac{2 \times  7 + 5 \times 3}{5 \times 7}     
  & = & \frac{4}{8 }  + \frac{6}{8 } \\
& = & \frac{10}{8} \\
& = & \frac{5}{4} \\
& = & 1\frac{1}{4}     
\end{array}
\end{array}
</math>
</math>


Kita perhatikan bahwa ada pola yang menarik, yaitu pola perkalian silang.


[[Image:Screen Shot 2022-02-21 at 11.45.36.png|250px]]
c) <small><math>\frac{1}{3}</math></small> + <small><math>\frac{3}{5}</math></small> =
 
:Penyebutnya dijadikan 3 x 5
 
 
<math>
\begin{array}{lcl}
\frac{1}{3} + \frac{3}{5}      & = &  \frac{1 \times 5}{3 \times 5} + \frac{3 \times 3}{5 \times 3} \\
& = & \frac{5}{15} +\frac{9}{15}    \\
& = & \frac{14}{15} 
\end{array}
</math>
 
 
d) <small><math>\frac{2}{5}</math></small> + <small><math>\frac{3}{7}</math></small> =
 
:Penyebutnya dijadikan 5 x 7
 
 
<math>
\begin{array}{lcl}
\frac{2}{5} + \frac{3}{7}      & = &  \frac{2 \times 7}{5 \times 7} + \frac{3 \times 5}{7 \times 5} \\
& = & \frac{14}{35} +\frac{15}{35}    \\
& = & \frac{29}{35} 
\end{array}
</math>


Ada cara yang dilakukan orang untuk mempercepat perhitungan yaitu dengan pola perkalian silang. Namun di Gasing kami tidak terlalu merekomendasikan cara ini. Karena anak jadi kehilangan konsep menjumlah atau mengurangi pecahan. Yang diingat adalah rumus.


Gunakan ini untuk mempercepat perhitungan mencongak.
[[Image:Screen Shot 2022-02-21 at 11.45.36.png|250px]]




Line 772: Line 800:




=== Subtraction ===
=== Pengurangan Pecahan ===


Pengurangan pecahan dengan penyebut berbeda sama konsepnya dengan penjumlahan pecahan dengan penyebut berbeda.
Pengurangan pecahan dengan penyebut berbeda sama konsepnya dengan penjumlahan pecahan dengan penyebut berbeda.


Mereka yang sudah mahir penjumlahan pecahan akan sangat cepat mengerti pengurangan pecahan ini.


Misalnya bagaimana menghitung <small><math>\frac{1}{4}</math></small> - <small><math>\frac{1}{6}</math></small> = ?
Misalnya bagaimana menghitung <small><math>\frac{1}{4}</math></small> - <small><math>\frac{1}{6}</math></small> = ?
Line 814: Line 843:




=== Substraction (Quick way) ===
=== Pengurangan cara cepat ===


Pola pengurangan pecahan cara cepat sama dengan pola penjumlahan pecahan cara cepat.
Pola pengurangan pecahan cara cepat sama dengan pola penjumlahan pecahan cara cepat.
Line 824: Line 853:
<math>
<math>
\begin{array}{lcl}
\begin{array}{lcl}
\frac{2}{5} - \frac{3}{10}      & = &  \frac{2 \times 10}{5 \times 10} - \frac{5 \times 3}{5 \times 10} \\
\frac{2}{5} - \frac{3}{10}      & = &  \frac{2 \times 10}{5 \times 10} - \frac{3 \times 5}{10 \times 5} \\
& = & \frac{2 \times  10 - 5 \times 3}{5 \times 10}  
& = & \frac{20}{50} -\frac{15}{50}    \\
& = & \frac{5}{50} \\ 
& = & \frac{1}{10}  
\end{array}
\end{array}
</math>
</math>
Line 837: Line 868:
<math>
<math>
\begin{array}{lcl}
\begin{array}{lcl}
\frac{4}{5} - \frac{3}{7}      & = &  \frac{4 \times 7}{5 \times 7} - \frac{5 \times 3}{5 \times 7} \\
\frac{4}{5} - \frac{3}{7}      & = &  \frac{4 \times 7}{5 \times 7} - \frac{3 \times 5}{7 \times 5} \\
& = & \frac{4 \times  7 - 5 \times 3}{5 \times 7}     
& = & \frac{28}{35} -\frac{15}{35}    \\
& = & \frac{13}{35}     
\end{array}
\end{array}
</math>
</math>


Pola perkalian silangnya adalah
[[Image:Screen Shot 2022-02-21 at 14.25.54.png|250px]]


Lihat video berikut ini untuk beberapa contoh pengurangan cara cepat
Lihat video berikut ini untuk beberapa contoh pengurangan cara cepat
Line 868: Line 896:




=== Negative fraction (Quick way) ===
=== Pecahan Negatif (cara cepat) ===


Konsep pecahan negatif, mirip dengan konsep bilangan bulat negatif.
Konsep pecahan negatif, mirip dengan konsep bilangan bulat negatif.
Line 881: Line 909:
Dari titik 0 ke kiri, nilai tiap titik berturut-turut adalah <small><math>-\frac{1}{5}, -\frac{2}{5}, -\frac{3}{5} </math></small> dst.
Dari titik 0 ke kiri, nilai tiap titik berturut-turut adalah <small><math>-\frac{1}{5}, -\frac{2}{5}, -\frac{3}{5} </math></small> dst.


Disini,  
Operasi penjumlahan dan pengurangan bilangan pecahan negatif, adalah seperti operasi bilangan bulat negatif.


Berikut ini adalah beberapa contoh operasi bilangan pecahan negatif.


<small><math>-\frac{1}{5}</math></small> nilainya sama dengan <small><math>0 -\frac{1}{5}</math></small>
a)  <small><math>-\frac{4}{5}</math></small> + <small><math>\frac{3}{7}</math></small> =


<small><math>-\frac{2}{5}</math></small>  nilainya sama dengan <small><math>0 -\frac{2}{5}</math></small>
:Penyebutnya dijadikan 5 x 7


<small><math>-\frac{3}{5}</math></small>  nilainya sama dengan <small><math>0 -\frac{3}{5}</math></small>


 
<math>
 
Operasi penjumlahan dan pengurangan bilangan pecahan negatif, adalah seperti operasi bilangan bulat negatif.
 
Berikut ini adalah beberapa contoh operasi bilangan pecahan negatif.
 
a)  <small><math>-\frac{4}{5}</math></small> + <small><math>\frac{3}{7}</math></small> =
 
:Penyebutnya dijadikan 5 x 7
 
 
<math>
\begin{array}{lcl}
\begin{array}{lcl}
-\frac{4}{5} + \frac{3}{7}      & = &  \frac{-4 \times 7}{5 \times 7} + \frac{5 \times 3}{5 \times 7} \\
-\frac{4}{5} + \frac{3}{7}      & = &  \frac{-4 \times 7}{5 \times 7} + \frac{3 \times 5}{7 \times 5} \\
& = & \frac{-4 \times  7 + 5 \times 3}{5 \times 7}     
& = & \frac{-28}{35} +\frac{15}{35}    \\
& = & \frac{-13}{35}    \\
& = &- \frac{13}{35}     
\end{array}
\end{array}
</math>
</math>
Pola perkalian silangnya adalah
[[Image:Screen Shot 2022-02-21 at 14.49.33.png|250px]]




Line 918: Line 933:
<math>
<math>
\begin{array}{lcl}
\begin{array}{lcl}
-\frac{4}{5} - \frac{3}{7}      & = &  \frac{-4 \times 7}{5 \times 7} - \frac{5 \times 3}{5 \times 7} \\
-\frac{4}{5} - \frac{3}{7}      & = &  \frac{-4 \times 7}{5 \times 7} - \frac{3 \times 5}{7 \times 5} \\
& = & \frac{-4 \times  7 - 5 \times 3}{5 \times 7}     
& = & \frac{-28}{35} -\frac{15}{35}    \\
& = & \frac{-43}{35}    \\
& = &- 1\frac{8}{35}
\end{array}
\end{array}
</math>
</math>




Pola perkalian silangnya adalah
[[Image:Screen Shot 2022-02-21 at 14.55.56.png|250px]]


Beberapa contoh penjumlahan dan pengurangan bilangan pecahan negatif dapat dilihat dalam video ini
Beberapa contoh penjumlahan dan pengurangan bilangan pecahan negatif dapat dilihat dalam video ini
Line 942: Line 956:




== Pure to compound fraction and vice versa ==
== Pecahan Biasa dan Pecahan Majemuk ==




=== Pure to Compound Fraction ===
=== Pecahan Biasa ke Pecahan Majemuk ===




Line 997: Line 1,011:




=== Compound to Pure Fraction ===
=== Pecahan Majemuk ke Pecahan Biasa ===


Bagaimana mengubah pecahan majemuk menjadi pecahan biasa atau pecahan murni?
Bagaimana mengubah pecahan majemuk menjadi pecahan biasa atau pecahan murni?
Line 1,038: Line 1,052:
\begin{array}{lcl}
\begin{array}{lcl}
4\frac{3}{5}& = & 4 + \frac{3}{5} \\
4\frac{3}{5}& = & 4 + \frac{3}{5} \\
        & = & \frac{20}{5} +  \frac{3}{5} \\
& = & \frac{20}{5} +  \frac{3}{5} \\
  & = & \frac{23}{5}
  & = & \frac{23}{5}
\end{array}
\end{array}
Line 1,044: Line 1,058:




Cara cepatnya
Video ini menunjukan contoh-contoh mengubah pecahan majemuk menjadi pecahan biasa.
:: Kalikan bilangan bulat dengan penyebut.
:: Tambahkan hasilnya dengan pembilang.


[[Image:Screen Shot 2022-02-22 at 09.12.39.png|250px]]
{{#ev:YouTube
|id= 49bF9cjeOY8
|width=640
|height=400
}}




<math>
*Aktivitas 11
\begin{array}{lcl}
 
3\frac{1}{2}& = & \frac{3 \times 2 + 1}{2} \\
Tujuan: siswa mengerjakan secara cepat soal-soal mengenai penjumlahan pecahan dengan beda penyebut
& = & \frac{7}{2}
\end{array}
</math>


Mengerjakan Latihan 9 - 10 dari buku Pecahan (buku 4)


<math>
\begin{array}{lcl}
5\frac{2}{7}& = & \frac{5 \times 7 + 2}{7} \\
& = & \frac{37}{7}
\end{array}
</math>
<math>
\begin{array}{lcl}
8\frac{3}{5}& = & \frac{8 \times 5 + 3}{5} \\
& = & \frac{43}{5}
\end{array}
</math>
Video ini menunjukan contoh-contoh mengubah pecahan majemuk menjadi pecahan biasa.
{{#ev:YouTube
|id= 49bF9cjeOY8
|width=640
|height=400
}}




*Aktivitas 11
== Titik Kritis ==
 
Tujuan: siswa mengerjakan secara cepat soal-soal mengenai penjumlahan pecahan dengan beda penyebut
 
Mengerjakan Latihan 9 - 10 dari buku Pecahan (buku 4)
 
 
 
== Critical point ==


Titik Kritis untuk pecahan dicapai kalau siswa sudah mampu menguasai penjumlahan dan pengurangan seperti berikut ini
Titik Kritis untuk pecahan dicapai kalau siswa sudah mampu menguasai penjumlahan dan pengurangan seperti berikut ini
Line 1,268: Line 1,249:




== Operation (+ and -) compound Fraction ==
== Penjumlahan dan Pengurangan Pecahan Majemuk ==


Pada bagian ini kita belajar bagaiman melakukan penjumlahan dan pengurangan pecahan majemuk.
Pada bagian ini kita belajar bagaiman melakukan penjumlahan dan pengurangan pecahan majemuk.
Line 1,280: Line 1,261:




Pada model ini pecahan campuran positif ditambah pecahan campuran positif.
Pada model ini Pecahan Majemuk positif ditambah Pecahan Majemuk positif.


Contoh : <math> 2 \frac{5}{7} + 3 \frac{3}{8} </math>
Contoh : <math> 2 \frac{5}{7} + 3 \frac{3}{8} </math>
Line 1,291: Line 1,272:
<math>
<math>
\begin{array}{lcl}
\begin{array}{lcl}
\frac{5}{7} + \frac{3}{8}      & = &  \frac{5 \times 8}{7 \times 8} + \frac{7 \times 3}{7 \times 8} \\
\frac{5}{7} + \frac{3}{8}      & = &  \frac{5 \times 8}{7 \times 8} + \frac{3 \times 7}{8 \times 7} \\
& = & \frac{5 \times  8 + 7 \times 3}{7 \times 8} \\
& = & \frac{40}{56} \frac{21}{56} \\
    & = & \frac{40 + 21}{56} \\
& = & \frac{61}{56} \\
& = & \frac{61}{56} \\
& = & 1 \frac{5}{56}
& = & 1\frac {5}{56}
\end{array}
\end{array}
</math>
</math>
Line 1,319: Line 1,299:




Pada model ini pecahan campuran negatif ditambah pecahan campuran negatif.
Pada model ini Pecahan Majemuk negatif ditambah Pecahan Majemuk negatif.


Contoh : <math> -2 \frac{5}{7} - 3 \frac{3}{8} </math>
Contoh : <math> -2 \frac{5}{7} - 3 \frac{3}{8} </math>
Line 1,329: Line 1,309:
<math>
<math>
\begin{array}{lcl}
\begin{array}{lcl}
-\frac{5}{7} - \frac{3}{8}      & = &  \frac{-5 \times 8}{7 \times 8} - \frac{7 \times 3}{7 \times 8} \\
-\frac{5}{7} - \frac{3}{8}      & = &  \frac{-5 \times 8}{7 \times 8} - \frac{3 \times 7}{8 \times 7} \\
  & = & \frac{-5 \times  8 - 7 \times 3}{7 \times 8} \\
  & = & -\frac{40}{56} \frac{21}{56} \\
    & = & \frac{-40 - 21}{56} \\
& = & \frac{-61}{56} \\
& = & \frac{-61}{56} \\
& = & -1\frac {5}{56}
& = & -1\frac {5}{56}
Line 1,356: Line 1,335:
=== model 3 : <math> 2\frac{2}{5} - 3\frac{3}{7} </math> ===
=== model 3 : <math> 2\frac{2}{5} - 3\frac{3}{7} </math> ===


Pada model ini pecahan campuran positif dikurangi pecahan campuran positif.
Pada model ini Pecahan Majemuk positif dikurangi Pecahan Majemuk positif.


Contoh : <math> 2 \frac{5}{7} - 3 \frac{3}{8} </math>
Contoh : <math> 2 \frac{5}{7} - 3 \frac{3}{8} </math>
Line 1,368: Line 1,347:
\begin{array}{lcl}
\begin{array}{lcl}
\frac{5}{7} - \frac{3}{8}      & = &  \frac{5 \times 8}{7 \times 8} - \frac{7 \times 3}{7 \times 8} \\
\frac{5}{7} - \frac{3}{8}      & = &  \frac{5 \times 8}{7 \times 8} - \frac{7 \times 3}{7 \times 8} \\
  & = & \frac{5 \times  8 - 7 \times 3}{7 \times 8} \\
  & = & \frac{40}{56} \frac{21}{56} \\
    & = & \frac{40 - 21}{56} \\
& = & \frac{19}{56}  
& = & \frac{19}{56}  
\end{array}
\end{array}
Line 1,392: Line 1,370:
=== model 4 : <math> -2\frac{2}{5} + 3\frac{3}{7} </math> ===
=== model 4 : <math> -2\frac{2}{5} + 3\frac{3}{7} </math> ===


Pada model ini pecahan campuran negatif ditambah pecahan campuran negatif.
Pada model ini Pecahan Majemuk negatif ditambah Pecahan Majemuk positif.


Contoh : <math> -2 \frac{5}{7} + 3 \frac{3}{8} </math>
Contoh : <math> -2 \frac{5}{7} + 3 \frac{3}{8} </math>
Line 1,403: Line 1,381:
\begin{array}{lcl}
\begin{array}{lcl}
-\frac{5}{7} + \frac{3}{8}      & = &  \frac{-5 \times 8}{7 \times 8} + \frac{7 \times 3}{7 \times 8} \\
-\frac{5}{7} + \frac{3}{8}      & = &  \frac{-5 \times 8}{7 \times 8} + \frac{7 \times 3}{7 \times 8} \\
& = & \frac{-5 \times  8 + 7 \times 3}{7 \times 8} \\
& = & -\frac{40}{56} + \frac{21}{56} \\
    & = & \frac{-40 + 21}{56} \\
& = & \frac{-19}{56}  
& = & \frac{-19}{56}  
\end{array}
\end{array}
Line 1,435: Line 1,412:




== Multiplication Fraction ==
== Perkalian Pecahan  ==


Pembahasan perkalian pecahan akan kita bagi dalam 4 bagian
Pembahasan perkalian pecahan akan kita bagi dalam 4 bagian
Line 1,445: Line 1,422:




=== Whole number x Fraction ===
=== Bilangan Bulat x bilangan Pecahan ===


:Perkalian pecahan menggunakan dasar konsep perkalian yang sudah dipelajari sebelumnya.  
:Perkalian bilangan pecahan menggunakan dasar konsep perkalian bilangan bulat yang sudah dipelajari sebelumnya.  
:Dalam perkalian kita tentu masih ingat  bahwa 3 x 2 artinya 3 kotak isi 2, yaitu konkretnya ada 3 kotak yang masing-masing isinya 2.
:Dalam perkalian bilangan bulat kita tentu masih ingat  bahwa 3 x 2 artinya 3 kotak isi 2, yaitu konkretnya ada 3 kotak yang masing-masing isinya 2 benda.


[[Image:Screen Shot 2022-02-23 at 04.23.02.png|400px]]
[[Image:Screen Shot 2022-02-23 at 04.23.02.png|400px]]
Line 1,455: Line 1,432:
:Sekarang bagaimana dengan 2 x <small><math>\frac{1}{2}</math></small> ?
:Sekarang bagaimana dengan 2 x <small><math>\frac{1}{2}</math></small> ?
: 2 x <small><math>\frac{1}{2}</math></small> artinya 2 kotak isi <small><math>\frac{1}{2}</math></small>
: 2 x <small><math>\frac{1}{2}</math></small> artinya 2 kotak isi <small><math>\frac{1}{2}</math></small>
: Konkretnya ada 2 kotak yang masing-masing berisi <small><math>\frac{1}{2}</math></small>
: Konkretnya ada 2 kotak yang masing-masing berisi <small><math>\frac{1}{2}</math></small> benda.


[[Image:Screen Shot 2022-02-23 at 04.23.35.png|300px]]
[[Image:Screen Shot 2022-02-23 at 04.23.35.png|300px]]
Line 1,465: Line 1,442:
Begitu pula  
Begitu pula  


:3 x <small><math>\frac{1}{2}</math></small> = 3▢<small><math>\frac{1}{2}</math></small> = <small><math>\frac{1}{2}</math></small> + <small><math>\frac{1}{2}</math></small> + <small><math>\frac{2}{2}</math></small> =  <small><math>\frac{3}{2}</math></small>  
:3 x <small><math>\frac{1}{2}</math></small> = 3▢<small><math>\frac{1}{2}</math></small> = <small><math>\frac{1}{2}</math></small> + <small><math>\frac{1}{2}</math></small> + <small><math>\frac{1}{2}</math></small> =  <small><math>\frac{3}{2}</math></small>  


Kongkretnya digambarkan sebagai 3 kotak masing-masing berisi <small><math>\frac{3}{2}</math></small>
Kongkretnya digambarkan sebagai 3 kotak masing-masing berisi <small><math>\frac{3}{2}</math></small>
Line 1,496: Line 1,473:




=== Fraction x whole number ===
=== Bilangan Pecahan x Bilangan Bulat ===




Line 1,502: Line 1,479:


: <small><math>\frac{1}{2}</math></small> x 6 artinya <small><math>\frac{1}{2}</math></small> kotak isi 6.
: <small><math>\frac{1}{2}</math></small> x 6 artinya <small><math>\frac{1}{2}</math></small> kotak isi 6.
:Jadi konkretnya ada 6 kue dalam suatu kotak lalu kita bagi kotak tersebut menjadi 2 bagian yang sama besar (sehingga banyaknya kue dalam tiap bagian sama). lalu kita hitung berapa isi kotak yang setengah itu?
:Jadi konkretnya ada 6 kue dalam suatu kotak lalu kita bagi kotak tersebut menjadi 2 bagian yang sama besar (sehingga banyaknya kue dalam tiap bagian sama). lalu kita hitung berapa isi 1 bagiannya itu.
:Hasilnya adalah 3
:Hasilnya adalah 3


Line 1,532: Line 1,509:
Perhatikan hasil-hasil yang kita peroleh
Perhatikan hasil-hasil yang kita peroleh


::<small><math>\frac{1}{2}</math></small> x 6 hasilnya sama dengan 6÷2 yaitu  3
::<small><math>\frac{1}{2}</math></small> x 6 hasilnya sama dengan membayangkan 6÷2 yaitu  3
::<small><math>\frac{1}{3}</math></small> x 6 hasilnya sama dengan 6÷3 yaitu 2
::<small><math>\frac{1}{3}</math></small> x 6 hasilnya sama dengan membayangkan 6÷3 yaitu 2
::<small><math>\frac{1}{3}</math></small> x 9 hasilnya sama dengan 9÷3 yaitu 3
::<small><math>\frac{1}{3}</math></small> x 9 hasilnya sama dengan membayangkan 9÷3 yaitu 3


Kesimpulan apa yang kita peroleh?
Kesimpulan apa yang kita peroleh?
Line 1,545: Line 1,522:


:Bagaimana dengan  <small><math>\frac{2}{3}</math></small> x 9 = ?
:Bagaimana dengan  <small><math>\frac{2}{3}</math></small> x 9 = ?
: <small><math>\frac{2}{3}</math></small> artinya 2 x <small><math>\frac{1}{3}</math></small>
: <small><math>\frac{2}{3}</math></small> x 9 artinya <small><math>\frac{2}{3}</math></small> kotak isi 9, jadi konkretnya ada 9 benda dalam suatu kotak lalu kita bagi kotak tersebut menjadi 3 bagian yang sama besar (sehingga banyaknya kue dalam tiap bagian sama). Lalu kita hitung berapa isi dua bagian kotak itu?
: Jadi <small><math>\frac{2}{3}</math></small> x 9 = 2 x <small><math>\frac{1}{3}</math></small> x 9 = 2 x 3 = 6
: Hasilnya adalah 2 x 3 = 6 benda


Jadi disini kita hitung dulu 9 ÷ 3 kemudian '''hasilnya dikalikan''' dengan 2.
Hasilnya dapat digambarkan sebagai berikut. Hasilnya adalah 6 kue yang ada dalam  daerah yang diarsir.


[[Image:Screen Shot 2022-02-23 at 05.09.42.png|400px]]
[[Image:Screen Shot 2022-02-23 at 05.09.42.png|400px]]


Secara kongkret ini dapat digambarkan sebagai berikut. Hasilnya adalah 6 kue yang ada dalam  daerah yang diarsir.


Berikut ini beberapa contoh perkalian pecahan dengan bilangan bulat
Berikut ini beberapa contoh perkalian pecahan dengan bilangan bulat


:a) <small><math>\frac{3}{4}</math></small> x 12 = ?
:a) <small><math>\frac{3}{4}</math></small> x 12 = ?
: <small><math>\frac{3}{4}</math></small> artinya 3 x <small><math>\frac{1}{4}</math></small>
: <small><math>\frac{3}{4}</math></small> x 12 artinya <small><math>\frac{3}{4}</math></small> kotak isi 12, jadi konkretnya ada 12 benda dalam suatu kotak lalu kita bagi kotak tersebut menjadi 4 bagian yang sama besar (sehingga banyaknya kue dalam tiap bagian sama). Lalu kita hitung berapa isi tiga bagian kotak itu?
: Jadi <small><math>\frac{3}{4}</math></small> x 12 = 3 x <small><math>\frac{1}{4}</math></small> x 12 = 3 x 3 = 9
: Hasilnya adalah 3 x 3 = 9 benda


[[Image:Screen Shot 2022-02-23 at 05.10.06.png|400px]]
[[Image:Screen Shot 2022-02-23 at 05.10.06.png|400px]]
Line 1,565: Line 1,540:


:b) <small><math>\frac{5}{6}</math></small> x 30 = ?
:b) <small><math>\frac{5}{6}</math></small> x 30 = ?
: <small><math>\frac{5}{6}</math></small> artinya 5 x <small><math>\frac{1}{6}</math></small>
: <small><math>\frac{5}{6}</math></small> x 30 artinya <small><math>\frac{5}{6}</math></small> kotak isi 30, jadi konkretnya ada 30 benda dalam suatu kotak lalu kita bagi kotak tersebut menjadi 6 bagian yang sama besar (sehingga banyaknya kue dalam tiap bagian sama). Lalu kita hitung berapa isi lima bagian kotak itu?
: Jadi <small><math>\frac{5}{6}</math></small> x 30 = 5 x <small><math>\frac{1}{6}</math></small> x 30 = 5 x 5 = 25
: Hasilnya adalah 5 x 5 = 25 benda
 
<small><math>\frac{5}{6}</math></small> x 30 = 25


[[Image:Screen Shot 2022-02-23 at 05.10.32.png|400px]]
[[Image:Screen Shot 2022-02-23 at 05.10.32.png|400px]]
Line 1,573: Line 1,550:


:c) <small><math>\frac{5}{7}</math></small> x 49 = ?
:c) <small><math>\frac{5}{7}</math></small> x 49 = ?
: <small><math>\frac{5}{7}</math></small> artinya 5 x <small><math>\frac{1}{7}</math></small>
: <small><math>\frac{5}{7}</math></small> x 49 artinya <small><math>\frac{5}{7}</math></small> kotak isi 49, jadi konkretnya ada 49 benda dalam suatu kotak lalu kita bagi kotak tersebut menjadi 7 bagian yang sama besar (sehingga banyaknya kue dalam tiap bagian sama). Lalu kita hitung berapa isi lima bagian kotak itu?
: Jadi <small><math>\frac{5}{7}</math></small> x 49 = 5 x <small><math>\frac{1}{7}</math></small> x 49 = 5 x 7 = 35
: Hasilnya adalah 7x 5 =35 benda
<small><math>\frac{5}{7}</math></small> x 49 = 35


[[Image:Screen Shot 2022-02-23 at 05.10.38.png|400px]]
[[Image:Screen Shot 2022-02-23 at 05.10.38.png|400px]]
Line 1,581: Line 1,559:


:d) <small><math>\frac{7}{9}</math></small> x 18 = ?
:d) <small><math>\frac{7}{9}</math></small> x 18 = ?
: <small><math>\frac{7}{9}</math></small> artinya 7 x <small><math>\frac{1}{9}</math></small>
: <small><math>\frac{7}{9}</math></small> x 18 artinya <small><math>\frac{7}{9}</math></small> kotak isi 18, jadi konkretnya ada 18 benda dalam suatu kotak lalu kita bagi kotak tersebut menjadi 9 bagian yang sama besar (sehingga banyaknya kue dalam tiap bagian sama). Lalu kita hitung berapa isi tujuh bagian kotak itu?
: Jadi <small><math>\frac{7}{9}</math></small> x 18 = 7 x <small><math>\frac{1}{9}</math></small> x 18 = 7 x 2 = 14
: Hasilnya adalah 2x7 = 14 benda
 


[[Image:Screen Shot 2022-02-23 at 05.10.44.png|400px]]
[[Image:Screen Shot 2022-02-23 at 05.10.44.png|400px]]
Line 1,600: Line 1,579:




=== Fraction x Fraction ===
=== Pecahan x Pecahan ===


Pada bab ini kita akan belajar tentang perkalian pecahan biasa dengan pecahan biasa, seperti <small><math>\frac{2}{5} \times \frac{3}{7}</math></small>  
Pada bab ini kita akan belajar tentang perkalian pecahan biasa dengan pecahan biasa, seperti <small><math>\frac{2}{5} \times \frac{3}{7}</math></small>  
Line 1,796: Line 1,775:




=== Compound x Compound ===
=== Pecahan Majemuk x Pecahan Majemuk ===




Line 1,852: Line 1,831:




=== Multiplication 3 fraction ===
=== Perkalian 3 Pecahan ===


Pada perkalian 3 pecahan kita bisa lakukan dengan sistem coret.
Pada perkalian 3 pecahan kita bisa lakukan dengan sistem coret.
Line 1,872: Line 1,851:
Mengerjakan Latihan 28 dari buku Pecahan (buku 4)
Mengerjakan Latihan 28 dari buku Pecahan (buku 4)


== Division Fraction ==
== Pembagian Pecahan  ==




Line 1,882: Line 1,861:
* Pembagian pecahan majemuk  
* Pembagian pecahan majemuk  


=== Bilangan Pecahan ÷ Bilangan Bulat ===


=== Whole number ÷ Fraction ===
:Pembagian pecahan menggunakan dasar konsep pembagian yang sudah dipelajari sebelumnya.
:Dalam pembagian kita tentu masih ingat  bahwa 6 ÷ 2 artinya saya punya 6 benda hendak dimasukan dalam 2 kotak, berapa yang diterima tiap kotak.
:Kita sudah tahu bahwa jawabnya adalah 3 benda.


:Pembagian pecahan menggunakan dasar konsep pembagian yang sudah dipelajari sebelumnya.
: Bagaimana dengan pembagian bilangan pecahan dengan bilangan bulat seperti <small><math>\frac{1}{2}</math></small> ÷ 2 ?
:Dalam pembagian kita tentu masih ingat bahwa 6 ÷ 2 artinya saya punya 6 kue hendak dimasukan dalam 2 kotak, berapa yang diterima tiap kotak.
:Kita sudah tahu bahwa jawabnya adalah 3.


:Bagaimana dengan pembagian  1 ÷ <small><math>\frac{1}{2}</math></small> ?
: <small><math>\frac{1}{2}</math></small> ÷ 2 artinya <small><math>\frac{1}{2}</math></small> kue hendak dimasukan dalam 2 kotak. Berapa isi masing-masing kotak agar pembagian ini adil dan merata.
:Saya punya kue hendak dimasukan dalam kotak dengan kapasitas atau ukuran <small><math>\frac{1}{2}</math></small>, berapa banyak potong kue dapat dimasukan dalam kotak tersebut?


[[Image:Screen Shot 2022-02-24 at 11.44.58.png|300px]]


Gambar dibawah ini menggambarkan situasi ketika 1 potong kue sudah masuk kotak.
[[Image:Screen Shot 2022-02-24 at 20.51.36.png|400px]]


[[Image:Screen Shot 2022-02-24 at 11.45.20.png|300px]]
Yang kita perlu lakukan adalah membagi dua kue <small><math>\frac{1}{2}</math></small> itu. Kemudian memasukan tiap bagian ke dalam kotak. Kita lihat tiap kotak akan menerima masing-masing  <small><math>\frac{1}{4}</math></small> kue.


Ini gambar situasi ketika 2 potong kue sudah masuk kotak.
Dengan demikian <small><math>\frac{1}{2}</math></small> ÷ 2 = <small><math>\frac{1}{4}</math></small>


[[Image:Screen Shot 2022-02-24 at 11.45.59.png|300px]]


Jadi total potongan kue yang diterima oleh kotak adalah 2.
:Sekarang bagaimana dengan  <small><math>\frac{1}{3}</math></small> : 2 = ?


Sehingga
Kita bisa gunakan papan pecahan.
:1 ÷ <small><math>\frac{1}{2}</math></small> = 2


Ini pecahan <small><math>\frac{1}{3}</math></small>


Sekarang kita akan hitung 1 ÷ <small><math>\frac{1}{4}</math></small>


[[Image:Screen Shot 2022-02-24 at 12.16.41.png|300px]]
[[Image:Screen Shot 2022-02-24 at 21.08.06.png|400px]]


:Pada gambar diatas kita punya 1 kue, hendak kita masukan dalam kotak dengan kapasitas atau ukuran  <small><math>\frac{1}{4}</math></small>.
Cari di papan pecahan, pecahan yang nilainya <small><math>\frac{1}{3}</math></small> tapi terbagi 2.
:Kue kita bagi menjadi potongan <small><math>\frac{1}{4}</math></small> agar bisa masuk kotak.
:Kita lihat bahwa kotak itu bisa menerima 4 potong kue.


Jadi
Jawabnya adalah pada gambar ini


:1 ÷ <small><math>\frac{1}{4}</math></small> = 4
[[Image:Screen Shot 2022-02-24 at 21.08.17.png|400px]]


Disini terlihat bahwa <small><math>\frac{1}{3} : 2 = \frac{1}{6} </math></small>




Dengan cara yang sama kita bisa dapatkan bahwa


:1 ÷ <small><math>\frac{1}{3}</math></small> = 3
:Bagaimana dengan  <small><math>\frac{1}{2}</math></small> ÷ 5 = ?
:1 ÷ <small><math>\frac{1}{6}</math></small> = 6
:1 ÷ <small><math>\frac{1}{10}</math></small> = 10


Pola apa yang Anda lihat?
Kita bisa gunakan papan pecahan.


:Bagaimana kalau 2 ÷ <small><math>\frac{1}{2}</math></small> = ?
Ini pecahan <small><math>\frac{1}{2}</math></small>


: Karena
[[Image:Screen Shot 2022-02-24 at 21.13.37.png|400px]]
:: 1 ÷ <small><math>\frac{1}{2}</math></small> = 2
:maka
:: 2 ÷ <small><math>\frac{1}{2}</math></small> = 2 x 2 = 4


[[Image:Screen Shot 2022-02-24 at 12.24.19.png|300px]]
Cari di papan pecahan, pecahan yang nilainya <small><math>\frac{1}{2}</math></small> tapi terbagi 5.


Jawabnya adalah pada gambar ini


Dengan cara yang sama kita bisa peroleh
[[Image:Screen Shot 2022-02-24 at 21.14.05.png|400px]]


:2 ÷ <small><math>\frac{1}{3}</math></small> = 2 x 3 = 6
Disini terlihat bahwa <small><math>\frac{1}{2} : 5 = \frac{1}{10} </math></small>
:2 ÷ <small><math>\frac{1}{4}</math></small> = 2 x 4 = 8
:2 ÷ <small><math>\frac{1}{6}</math></small> = 2 x 6 = 12
:2 ÷ <small><math>\frac{1}{10}</math></small> = 2 x 10 = 20


Dan dengan pola yang sama kita bisa peroleh


:5 ÷ <small><math>\frac{1}{3}</math></small> = 5 x 3 = 15
Perhatikan hasil-hasil yang kita peroleh dibawah ini
:9 ÷ <small><math>\frac{1}{4}</math></small> = 9 x 4 = 36
:12 ÷ <small><math>\frac{1}{6}</math></small> = 12 x 6 = 72
:25 ÷ <small><math>\frac{1}{10}</math></small> = 25 x 10 = 250


::<small><math>\frac{1}{2}</math></small> ÷ 6, kita membayangkan 1/2 kue dipotong-potong jadi 6 bagian yang sama  hasilnya yaitu  <small><math>\frac{1}{12}</math></small>
::<small><math>\frac{1}{3}</math></small> ÷ 4, kita membayangkan 1/3 kue dipotong-potong jadi 4 bagian yang sama  hasilnya yaitu  <small><math>\frac{1}{12}</math></small>
::<small><math>\frac{1}{5}</math></small> ÷ 7, kita membayangkan 1/5 kue dipotong-potong menjadi 7 bagian yang sama hasilnya yaitu  <small><math>\frac{1}{35}</math></small>


: Cara cepat


Pembagian bilangan bulat dengan pecahan dapat digambarkan sebagai berikut.
Video berikut menunjukan beberapa contoh perkalian bilangan pecahan dengan bilangan bulat.
Kita mengalikan penyebut dengan bilangan bulat.
 
[[Image:Screen Shot 2022-02-24 at 17.08.52.png|200px]]
 
Umtuk pembilang lebih dari 1 maka pembagian bilangan bulat dengan pecahan adalah dengan cara berikut
:: kalikan penyebut dengan bilangan bulat
:: Bagi hasilnya dengan pembilang dari pecahan
 
[[Image:Screen Shot 2022-02-24 at 17.08.52.png|200px]]
 
 
Video berikut menunjukan berbagai contoh pembagian bilangan bulat dengan pecahan.






{{#ev:YouTube
{{#ev:YouTube
|id= RbJ0IYVfnss
|id= DBSXhkjXA7o
|width=640
|width=640
|height=400
|height=400
}}
}}


=== Bilangan Bulat  ÷ Bilangan Pecahan ===


: Kalimat perkalian  2 x 3 = 6, artinya jika ada 2 kotak masing-masing kotak isi 3 benda maka jumlah seluruh benda dalam kotak-kotak itu adalah 6 benda.
: Dari perkalian 2 x 3 = 6, maka arti pembagian 6:2 = 3 adalah kita punya 6 benda hendak dibagikan dalam 2 kotak, maka isi tiap kotak adalah 3 benda.
: Dari perkalian 2 x 3 = 6, maka arti pembagian 6:3 = 2 adalah kita punya 6 benda hendak dimasukan dalam kotak, setiap kotak hanya bisa menampung 3 benda, maka jumlah kotak yang bisa menerima 6 benda ini ada 2 kotak.


=== Fraction ÷ whole number ===
Disini kita lihat ada 2 arti pembagian.  Pembagian pertama yang sering kita pakai adalah menanyakan isi kotak. Sedangkan pembagian kedua  adalah menanyakan banyak kotak.


Untuk perkalian bilangan bulat x bilangan pecahan, kita akan gunakan arti pembagian kedua.


: Bagaimana dengan pembagian bilangan pecahan dengan bilangan bulat seperti  <small><math>\frac{1}{2}</math></small> ÷ 2 ?
Contoh:  
<small><math>\frac{1}{2}</math></small>= ?
Untuk melihat konkretnya ada baiknya kita ambil wadah air 1 liter dan wadah air 1/2 liter.
Air dituang dari wadah 1 liter ke wadah 1/2 liter... kita lihat bahwa kita membutuhkan 2 wadah yang 1/2 liter.


: <small><math>\frac{1}{2}</math></small> ÷ 2 artinya <small><math>\frac{1}{2}</math></small> kue hendak dimasukan dalam 2 kotak. Berapa isi masing-masing kotak agar pembagian ini adil dan merata.
Jadi 1÷ <small><math>\frac{1}{2}</math></small>= 2




[[Image:Screen Shot 2022-02-24 at 20.51.36.png|400px]]
:Bagaimana dengan pembagian  1 ÷ <small><math>\frac{1}{2}</math></small> ?
:Saya punya kue hendak dimasukan dalam kotak dengan kapasitas atau ukuran <small><math>\frac{1}{2}</math></small>, berapa banyak potong kue dapat dimasukan dalam kotak tersebut?


Yang kita perlu lakukan adalah membagi dua kue <small><math>\frac{1}{2}</math></small> itu. Kemudian memasukan tiap bagian ke dalam kotak. Kita lihat tiap kotak akan menerima masing-masing  <small><math>\frac{1}{4}</math></small> kue.
[[Image:Screen Shot 2022-02-24 at 11.44.58.png|300px]]


Dengan demikian <small><math>\frac{1}{2}</math></small> ÷ 2 = <small><math>\frac{1}{4}</math></small>
Gambar dibawah ini menggambarkan situasi ketika 1 potong kue sudah masuk kotak pertama.


[[Image:Screen Shot 2022-02-24 at 11.45.20.png|300px]]


:Sekarang bagaimana dengan  <small><math>\frac{1}{3}</math></small> : 2 = ?
Ini gambar situasi ketika 2 potong kue sudah masuk kotak kedua.


Kita bisa gunakan papan pecahan.


Ini pecahan <small><math>\frac{1}{3}</math></small>
[[Image:Screen Shot 2022-02-24 at 11.45.59.png|300px]]


Jadi jumlah kotak yang dibutuhkan adalah 2 kotak.


[[Image:Screen Shot 2022-02-24 at 21.08.06.png|400px]]


Cari di papan pecahan, pecahan yang nilainya <small><math>\frac{1}{3}</math></small> tapi terbagi 2.


Jawabnya adalah pada gambar ini
Sekarang kita akan hitung 1 ÷ <small><math>\frac{1}{4}</math></small>


[[Image:Screen Shot 2022-02-24 at 21.08.17.png|400px]]
[[Image:Screen Shot 2022-02-24 at 12.16.41.png|300px]]


Disini terlihat bahwa <small><math>\frac{1}{3} : 2 = \frac{1}{6} </math></small>
:Pada gambar diatas kita punya 1 kue, hendak kita masukan dalam beberapa kotak dengan kapasitas atau ukuran  <small><math>\frac{1}{4}</math></small>.
:Kue kita bagi menjadi potongan <small><math>\frac{1}{4}</math></small> agar bisa masuk kotak.
:Kita lihat bahwa banyak kotak adalah 4 buah.


Jadi


:1 ÷ <small><math>\frac{1}{4}</math></small> = 4


:Bagaimana dengan  <small><math>\frac{1}{2}</math></small> ÷ 5 = ?
Bisa juga kita gunakan wadah 1 liter dan wadah 1/4 liter. Air dalam wadah 1 liter kita tuangkan dalam wadah 1/4 liter dan kita bisa lihat bahwa untuk ini dibutuhkan 4 wadah. Jadi


Kita bisa gunakan papan pecahan.
1 ÷ <small><math>\frac{1}{4}</math></small> = 4


Ini pecahan <small><math>\frac{1}{2}</math></small>
Dengan cara yang sama kita bisa dapatkan bahwa


[[Image:Screen Shot 2022-02-24 at 21.13.37.png|400px]]
:1 ÷ <small><math>\frac{1}{3}</math></small> = 3
:1 ÷ <small><math>\frac{1}{6}</math></small> = 6
:1 ÷ <small><math>\frac{1}{10}</math></small> = 10


Cari di papan pecahan, pecahan yang nilainya <small><math>\frac{1}{2}</math></small> tapi terbagi 5.
Pola apa yang Anda lihat?


Jawabnya adalah pada gambar ini
:Bagaimana kalau 2 ÷ <small><math>\frac{1}{2}</math></small> = ?


[[Image:Screen Shot 2022-02-24 at 21.14.05.png|400px]]
: Karena
:: 1 ÷ <small><math>\frac{1}{2}</math></small> = 2
:maka
:: 2 ÷ <small><math>\frac{1}{2}</math></small> = 2 x 2 = 4


Disini terlihat bahwa <small><math>\frac{1}{2} : 5 = \frac{1}{10} </math></small>
[[Image:Screen Shot 2022-02-24 at 12.24.19.png|300px]]




Perhatikan hasil-hasil yang kita peroleh dibawah ini
Dengan cara yang sama kita bisa peroleh


::<small><math>\frac{1}{2}</math></small> ÷ 6 hasilnya sama dengan <small><math>\frac{1}{2×6}</math></small> yaitu  <small><math>\frac{1}{12}</math></small>
:2 ÷ <small><math>\frac{1}{3}</math></small> = 2 x 3 = 6
::<small><math>\frac{1}{3}</math></small> ÷ 4 hasilnya sama dengan <small><math>\frac{1}{3×4}</math></small> yaitu  <small><math>\frac{1}{12}</math></small>
:2 ÷ <small><math>\frac{1}{4}</math></small> = 2 x 4 = 8
::<small><math>\frac{1}{5}</math></small> ÷ 7 hasilnya sama dengan <small><math>\frac{1}{5×7}</math></small> yaitu  <small><math>\frac{1}{35}</math></small>
:2 ÷ <small><math>\frac{1}{6}</math></small> = 2 x 6 = 12
:2 ÷ <small><math>\frac{1}{10}</math></small> = 2 x 10 = 20


Kesimpulan apa yang kita peroleh?
Dan dengan pola yang sama kita bisa peroleh
 
:5 ÷ <small><math>\frac{1}{3}</math></small> = 5 x 3 = 15
:9 ÷ <small><math>\frac{1}{4}</math></small> = 9 x 4 = 36
:12 ÷ <small><math>\frac{1}{6}</math></small> = 12 x 6 = 72
:25 ÷ <small><math>\frac{1}{10}</math></small> = 25 x 10 = 250


:Kita lihat bahwa pembagian pecahan dengan bilangan bulat sama dengan '''penyebutnya dikalikan dengan bilangan bulat'''.
:Sedangkan '''pembilang tetap sama'''.
[[Image:Screen Shot 2022-02-25 at 02.58.58.png|400px]]


Jadi resep untuk menghitung perbagian bilangan bulat dengan bilangan pecahan seperti 25 ÷ <small><math>\frac{1}{10}</math></small> adalah dengan membayangkan  1 kali÷ <small><math>\frac{1}{10}</math></small>. Kemudian hasilnya ini dikalikan 25.  Hasilnya adalah 250.


Video berikut menunjukan beberapa contoh perkalian bilangan pecahan dengan bilangan bulat.
Video berikut menunjukan berbagai contoh pembagian bilangan bulat dengan pecahan.






{{#ev:YouTube
{{#ev:YouTube
|id= DBSXhkjXA7o
|id= RbJ0IYVfnss
|width=640
|width=640
|height=400
|height=400
}}
}}
=== Fraction ÷ Fraction ===
 
 
 
=== Pecahan ÷ Pecahan ===


Pada bagian ini kita akan belajar tentang pembagian pecahan biasa dengan pecahan biasa, seperti <small><math>\frac{2}{5} \div \frac{3}{7}</math></small>  
Pada bagian ini kita akan belajar tentang pembagian pecahan biasa dengan pecahan biasa, seperti <small><math>\frac{2}{5} \div \frac{3}{7}</math></small>  
Line 2,062: Line 2,038:
Misalkan kita akan menghitung <small><math>\frac{1}{2}</math></small> ÷ <small><math>\frac{1}{4}</math></small>  
Misalkan kita akan menghitung <small><math>\frac{1}{2}</math></small> ÷ <small><math>\frac{1}{4}</math></small>  


<math>\frac{1}{2} \div \frac{1}{4}</math>  artinya ada kue berukuran <small><math>\frac{1}{2}</math></small> hendak dimasukan dalam kotak berukuran  <small><math>\frac{1}{4}</math></small>, ada berapa potongan kue diterima oleh kotak itu.
<math>\frac{1}{2} \div \frac{1}{4}</math>  artinya ada kue berukuran <small><math>\frac{1}{2}</math></small> hendak dimasukan dalam kotak berukuran  <small><math>\frac{1}{4}</math></small>, ada berapa banyak kotak dibutuhkan?


[[Image:Screen Shot 2022-02-25 at 05.07.18.png|300px]]
[[Image:Screen Shot 2022-02-25 at 05.07.18.png|300px]]
Line 2,075: Line 2,051:
Kue yang sudah dipotong ini  dimasukan satu persatu ke dalam kotak <small><math>\frac{1}{4}</math></small>.
Kue yang sudah dipotong ini  dimasukan satu persatu ke dalam kotak <small><math>\frac{1}{4}</math></small>.


Banyak potongan kue yang diterima kotak itu adalah 2 buah.
Banyak kotak yang dibutuhkan adalah 2 buah.


:: Dengan demikian <small><math>\frac{1}{2} \div \frac{1}{4}</math></small> = 2
:: Dengan demikian <small><math>\frac{1}{2} \div \frac{1}{4}</math></small> = 2


Kita bisa juga lakukan ini dengan wadah 1/2 liter air dan wadah 1/4 liter air.  Kita masukan air dari wadah 1/2 liter ke wadah 1/4 liter. Kita lihat bahwa kita butuh 2 wadah. Jadi
<small><math>\frac{1}{2} \div \frac{1}{4}</math></small> = 2




Line 2,087: Line 2,066:
[[Image:Screen Shot 2022-02-25 at 03.30.29.png|300px]]
[[Image:Screen Shot 2022-02-25 at 03.30.29.png|300px]]


<math>\frac{1}{2} \div \frac{1}{4}</math>  artinya ada batang <small><math>\frac{1}{2}</math></small> hendak dimasukan dalam kotak  <small><math>\frac{1}{4}</math></small>, ada berapa buah potongan bisa masuk dalam kotak itu.
<math>\frac{1}{2} \div \frac{1}{4}</math>  artinya ada batang <small><math>\frac{1}{2}</math></small> hendak dimasukan dalam kotak  <small><math>\frac{1}{4}</math></small>, ada berapa buah kotak dibutuhkan.


Pecahan <small><math>\frac{1}{2}</math></small>  terlalu besar untuk masuk kotak <small><math>\frac{1}{4}</math></small>. Karena itu maka pecahan  <small><math>\frac{1}{2}</math></small> itu harus dipotong menjadi beberapa potongan pecahan <small><math>\frac{1}{4}</math></small>.
Pecahan <small><math>\frac{1}{2}</math></small>  terlalu besar untuk masuk kotak <small><math>\frac{1}{4}</math></small>. Karena itu maka pecahan  <small><math>\frac{1}{2}</math></small> itu harus dipotong menjadi beberapa potongan pecahan <small><math>\frac{1}{4}</math></small>.
Line 2,097: Line 2,076:
Potongan pecahan  <small><math>\frac{1}{4}</math></small> ini \kemudian dimasukan satu persatu ke dalam kotak <small><math>\frac{1}{4}</math></small>.
Potongan pecahan  <small><math>\frac{1}{4}</math></small> ini \kemudian dimasukan satu persatu ke dalam kotak <small><math>\frac{1}{4}</math></small>.


Banyak potongan pecahan yang diterima kotak itu adalah 2 buah.
Banyak kotak yang dibutuhkan adalah 2 buah.


:: Dengan demikian <small><math>\frac{1}{2} \div \frac{1}{4}</math></small> = 2
:: Dengan demikian <small><math>\frac{1}{2} \div \frac{1}{4}</math></small> = 2
Line 2,107: Line 2,086:


* Arti <small><math>\frac{1}{2} \div \frac{1}{8}</math></small> adalah kita mempunyai pecahan  <small><math>\frac{1}{2} </math></small>
* Arti <small><math>\frac{1}{2} \div \frac{1}{8}</math></small> adalah kita mempunyai pecahan  <small><math>\frac{1}{2} </math></small>
hendak dimasukan dalam kotak berukuran  <small><math>\frac{1}{8} </math></small>, tentunya pecahan itu harus dipotong-potong. Ada berapa potongan yang diterima oleh kotak  <small><math>\frac{1}{8} </math></small> ini?
hendak dimasukan dalam kotak berukuran  <small><math>\frac{1}{8} </math></small>, tentunya pecahan itu harus dipotong-potong. Ada berapa kotak  <small><math>\frac{1}{8} </math></small> dibutuhkan?


* Cari di papan pecahan, pecahan <small><math>\frac{1}{2} </math></small>
* Cari di papan pecahan, pecahan <small><math>\frac{1}{2} </math></small>
Line 2,114: Line 2,093:


* Tempatkan pecahan  <small><math>\frac{1}{2} </math></small> ini ke dalam deretan pecahan <small><math>\frac{1}{8}</math></small>. Kita lihat  
* Tempatkan pecahan  <small><math>\frac{1}{2} </math></small> ini ke dalam deretan pecahan <small><math>\frac{1}{8}</math></small>. Kita lihat  
ada 4 pecahan <small><math>\frac{1}{8}</math></small> yang nilainya <small><math>\frac{1}{2} </math></small>.
ada 4 pecahan <small><math>\frac{1}{8}</math></small> yang nilainya <small><math>\frac{1}{2} </math></small>. Dengan kata lain ada 4 kotak <small><math>\frac{1}{8}</math></small> dibutuhkan untuk menampung <small><math>\frac{1}{2} </math></small>.


[[Image:Screen Shot 2022-02-25 at 03.46.23.png|300px]]
[[Image:Screen Shot 2022-02-25 at 03.46.23.png|300px]]
* Masukan potongan pecahan-pecahan <small><math>\frac{1}{8}</math></small> ini ke dalam kotak berukuran <small><math>\frac{1}{8}</math></small>, ada berapa potongan yang bisa masuk? Jawabnya 4
* Dengan demikian maka <small><math>\frac{1}{2} \div \frac{1}{8}</math></small> = 4.
:b)  <small><math>\frac{1}{3} \div \frac{1}{2}</math></small>
* Arti <small><math>\frac{1}{3} \div \frac{1}{2}</math></small> adalah kita mempunyai pecahan  <small><math>\frac{1}{3} </math></small>
hendak dimasukan dalam kotak berukuran  <small><math>\frac{1}{2} </math></small>, tentunya tidak mencukupi. Nah hitung berapa bagian dari pecahan  <small><math>\frac{1}{3} </math></small> yang dapat ditampung oleh kotak <small><math>\frac{1}{2} </math></small> ini.
* Pertama kita cari pada papan pecahan,  pecahan <small><math>\frac{1}{3} </math></small>
[[Image:Screen Shot 2022-02-25 at 04.03.06.png|300px]]
* Tempatkan pecahan <small><math>\frac{1}{3} </math></small> ini ke dalam kotak <small><math>\frac{1}{2} </math></small>
[[Image:Screen Shot 2022-02-25 at 04.14.43.png|300px]]
* Perhatikan berapa bagian dari kotak <small><math>\frac{1}{2} </math></small> ditempati pecahan <small><math>\frac{1}{3} </math></small>?
: Gunakan bantuan deretan pecahan <small><math>\frac{1}{6} </math></small>
: Jawabnya adalah <small><math>\frac{2}{3} </math></small> (dua bagian dari suatu kelompok yang terdiri dari tiga bagian yang sama besar).
: Jadi hanya <small><math>\frac{2}{3} </math></small> bagian dari kotak <small><math>\frac{1}{2} </math></small>
yang ditempati oleh pecahan <small><math>\frac{1}{3} </math></small>
:: Dengan demikian
:: <small><math>\frac{1}{3} \div \frac{1}{2}</math></small>= <small><math>\frac{2}{3} </math></small>
Cara cepat
Dari pembahasan diatas ada pola-pola tertentu pada pembagian pecahan dengan pecahan. Pola ini digambarkan sebagai berikut
[[Image:Screen Shot 2022-02-25 at 05.39.40.png|300px]]
Ini dapat digunakan untuk mempercepat perhitungan pembagian pecahan dengan pecahan.
Video ini menunjukan bagaimana cara mengerjakan soal-soal pembagian pecahan dengan pecahan.
{{#ev:YouTube
|id= B04Uy2eTQeM
|width=640
|height=400
}}
=== Pembagian pecahan cara khusus ===
Metode ini mudah diingat dan mudah dikerjakan. Yang kita perlukan adalah '''menyamakan penyebut''' kedua bilangan (pembagi dan yang dibagi).
Mari kita lihat berbagai contoh dibawah ini
:a) <small><math> 5 \div \frac{7}{9}</math></small> = ?
:: Samakan dulu penyebutnya <small><math> 5 \div \frac{7}{9}</math></small> = <small><math> \frac{45}{9} \div \frac{7}{9}</math></small>
:: pembilang dibagi pembilang 45 ÷ 7 = <small><math> \frac{45}{7} = 6  \frac{3}{7}</math></small>
:: penyebut dibagi penyebut 9 ÷ 9 = 1
:: Hasilnya adalah <small><math> 6  \frac{3}{7}</math></small> ÷ 1 =  6  <small><math> \frac{3}{7}</math></small>
:: Jadi <small><math> 5 \div \frac{7}{9}</math></small> = 6 <small><math> \frac{3}{7}</math></small>
:b) <small><math> 12 \div \frac{4}{5}</math></small> = ?
:: Samakan dulu penyebutnya <small><math> 12 \div \frac{4}{5}</math></small> = <small><math> \frac{60}{5} \div \frac{4}{5}</math></small>
:: pembilang dibagi pembilang 60 ÷ 4 = 15
:: penyebut dibagi penyebut 5 ÷ 5 = 1
:: Hasilnya adalah 15 ÷ 1 = 15
:: Jadi <small><math> 12 \div \frac{4}{5}</math></small> = 15
                                                                                                                                                                                                           
:c) <small><math>  \frac{3}{5} \div 9  </math></small> = ?
:: Samakan dulu penyebutnya <small><math>  \frac{3}{5} \div 9  </math></small> = <small><math> \frac{3}{5} \div \frac{45}{5}</math></small>
:: pembilang dibagi pembilang 3 ÷ 45 = <small><math> \frac{3}{45} =  \frac{1}{15}</math></small>
:: penyebut dibagi penyebut 5 ÷ 5 = 1
:: Hasilnya adalah <small><math> \frac{1}{15}</math></small> ÷ 1 =  <small><math> \frac{1}{15}</math></small>
:: Jadi <small><math>  \frac{3}{5} \div 9 </math></small> = <small><math> \frac{1}{15}</math></small>
:d) <small><math>  \frac{3}{5} \div \frac{2}{5}  </math></small> = ?
:: pembilang dibagi pembilang 3 ÷ 2 = <small><math>  \frac{3}{2}</math></small>
:: penyebut dibagi penyebut 5 ÷ 5 = 1
:: Hasilnya adalah <small><math> \frac{3}{2}</math></small> ÷ 1 =  <small><math> \frac{3}{2} = 1 \frac{1}{2} </math></small>
:: Jadi <small><math>  \frac{3}{5} \div \frac{2}{5}  </math></small> = <small><math> 1 \frac{1}{2}</math></small>
:e) <small><math>  \frac{3}{10} \div \frac{6}{15}  </math></small> = ?
:: Samakan dulu penyebutnya <small><math>  \frac{9}{30} \div \frac{12}{30}  </math></small> =
:: pembilang dibagi pembilang 9 ÷ 12 = <small><math>  \frac{9}{12} = \frac{3}{4} </math></small>
:: penyebut dibagi penyebut 30 ÷ 30 = 1
:: Hasilnya adalah <small><math> \frac{3}{4}</math></small> ÷ 1 =  <small><math> \frac{3}{4} </math></small>
:: Jadi <small><math>  \frac{3}{10} \div \frac{6}{15}  </math></small> = <small><math> \frac{3}{4}</math></small>
:f) <small><math>  \frac{3}{6} \div \frac{5}{18}  </math></small> = ?
:: Samakan dulu penyebutnya <small><math>  \frac{9}{18} \div \frac{5}{18}  </math></small> =
:: pembilang dibagi pembilang 9 ÷ 5 = <small><math>  \frac{9}{5} = 1 \frac{4}{5} </math></small>
:: penyebut dibagi penyebut 18 ÷ 18 = 1
:: Hasilnya adalah <small><math> 1 \frac{4}{5}</math></small> ÷ 1 =  <small><math> 1 \frac{4}{5} </math></small>
:: Jadi <small><math>  \frac{3}{6} \div \frac{5}{18}  </math></small> = <small><math> 1\frac{4}{5}</math></small>
Video berikut ini beberapa contoh pembagian pecahan dengan pecahan
{{#ev:YouTube
|id= M7Bdsqgp3kE
|width=640
|height=400
}}
=== Compound ÷ Compound ===
Pada pembagian pecahan majemuk, kita harus mengubah dulu pecahan majemuk ini menjadi pecahan biasa. Setelah itu kita bisa lakukan pembagian pecahan seperti yang sudah dipelajari sebelumnya.
Perhatikan contoh berikut
: <small><math> 1 \frac{3}{4} \div 2\frac{5}{8}</math></small> =
Hasil perhitungan diberikan pada gambar dibawah ini
[[Image:Screen Shot 2022-02-25 at 05.53.39.png|300px]]
Perhatikan video berikut ini untuk penjelasan beberapa contoh pembagian bilangan majemuk.
{{#ev:YouTube
|id= Z9I-h-4lcRU
|width=640
|height=400
}}
*Aktivitas 15
Tujuan: siswa mengerjakan secara cepat soal-soal mengenai pembagian pecahan
Mengerjakan Latihan 29-30 dari buku Pecahan (buku 4)

Latest revision as of 22:15, 28 December 2023

Gasing Berhitung: Pecahan

Untuk belajar pecahan kita perlu melewati beberapa langkah sebagai berikut:

Error creating thumbnail: Unable to save thumbnail to destination
  1. Arti pecahan
  2. Pecahan senilai dan penyederhanaan pecahan
  3. Penjumlahan dan pengurangan pecahan dengan penyebut yang sama atau berbeda
  4. Konsep ‘SATU’ dan pecahan adalah bagi
  5. Pecahancampuran
  6. Titik kritis GASING

Untuk titik kritis Gasing dalam operasi penjumlahan dan pengurangan adalah siswa mampu mengerjakan 4 jenis operasi ini secara cepat.


Screen Shot 2022-02-11 at 17.53.17.png


Selanjutnya setelah menguasai operasi penjumlahan dan pengurangan, maka operasi perkalian dan pembagian pecahan dapat dilakukan dengan mudah.


Arti Pecahan

Pecahan adalah suatu simbol yang terdiri dari 2 angka yang dipisahkan oleh satu garis.

Screenshot 2023-12-27 at 21.19.53.png

Pecahan ini adalah simbol yang tidak punya arti apa-apa kalau tidak diberi konteks.

Sama seperti bilangan bulat, bilangan bulat itu hanyalah simbol-simbol berupa angka 0,1,2, 3...9 yang tidak ada makna apa-apa kalau tidak diberi konteks.

Maksudnya apa?

Misalnya

5 Jeruk.

Konteksnya adalah jeruk.

Ketika 5 dihubungkan dengan jeruk, maka 5 itu menunjukan jumlah jeruk sebanyak lima buah.

Screenshot 2023-12-27 at 21.27.01.png

Bagaimana memberi konteks pecahan?

Error creating thumbnail: File missing

Pada gambar di atas, angka 1 kita beri konteks batang (berat atau panjangnya).

Gambar pertama ada 1 batang. Kita sebut nilai batang ini adalah 1 batang.

1 Batang pada gambar pertama kita potong menjadi 2 bagian yang sama nilainya.

Satu potongan kita sebut nilainya batang.

diartikan sebagai nilai satu bagian dari satu kelompok yang terdiri dari dua bagian yang sama nilainya.

Bagaimana jika 1 batang pada gambar pertama itu kita potong menjadi 4 bagian yang sama nilainya.

Potongan ini kita sebut nilainya batang.

diartikan sebagai nilai satu bagian dari satu kelompok yang terdiri dari empat bagian yang sama nilainya.


Contoh lain:

Ada 1 jeruk dipotong menjadi 2 bagian yang sama besar.
1 bagian jeruk nilainya adalah jeruk.
Karena ini menunjukan satu bagian dari satu kelompok yang terdiri dari dua bagian jeruk yang sama nilainya.

Screen Shot 2022-02-19 at 06.55.46.png


Sekarang perhatikan gambar berikut ini:

Error creating thumbnail: Unable to save thumbnail to destination

Apakah potongan kuning atau potongan merah ini bernilai Jawabnya bisa ya bisa tidak tergantung konteksnya atau nilainya.

Jika konteksnya adalah warna benda, maka potongan kuning ini bernilai karena ini adalah satu warna dari satu kelompok yang terdiri dari dua warna (putih dan kuning) yang sama nilainya. Dalam hal ini nilainya adalah warna benda.

Hal yang sama berlaku untuk potongan merah.

Tetapi kalau konteksnya adalah luas benda, maka potongan kuning maupun potongan merah tidak bernilai


Screen Shot 2022-02-11 at 17.53.44.png

Batang kuning dibagi menjadi 3 bagian sama besar
Tiap bagian bernilai
menunjukan nilai 1 bagian dari satu kelompok yang terdiri dari 3 bagian yang sama nilainya.


Screen Shot 2022-02-11 at 17.53.50.png

Batang ungu dibagi menjadi 4 bagian sama besar
Tiap bagian bernilai
menunjukan nilai 1 bagian dari satu kelompok yang terdiri dari 4 bagian yang sama nilainya.


Error creating thumbnail: Unable to save thumbnail to destination
1 Lingkaran dibagi menjadi 8 bagian sama besar
Bagian yang berwarna kuning bernilai
menunjukan nilai 3 bagian dari satu kelompok yang terdiri dari 8 bagian yang sama besar.


dibaca “1 garis 2” atau “1 per 2”.
Angka yang diatas dinamakan pembilang
Angka yang dibawah dinamakan penyebut


Lihat video berikut ini mengenai konsep pecahan.

{{#ev:YouTube |id= C4gB6iA70l4 |width=640 |height=400 }}



  • Aktivitas 1

Tujuan: siswa mengerjakan secara cepat soal-soal mengenai konsep pecahan

Mengerjakan Latihan 1a dari buku Pecahan (buku 4)

  • Aktivitas 2

Peserta membuat group 10 orang. Kemudian sebagian (misalnya 3 orang) berdiri dan sisanya duduk. Kita katakan orang yang berdiri nilainya adalah 3/10. Karena 3 orang dari kelompok yang terdiri dari 10 orang manusia yang nilainya sama yaitu sama-sama manusia.


Pecahan Senilai

Error creating thumbnail: Unable to save thumbnail to destination
Batang kuning atas bernilai
Batang kuning bawah bernilai
Kedua batang tersebut sama besar (sama nilainya) sehingga kita katakan keduanya senilai.
senilai
=
Perhatikan: dan nilainya sama walaupun artinya berbeda
artinya nilai 1 bagian dari kelompok yang terdiri dari 2 bagian yang sama nilainya
artinya nilai 2 bagian dari kelompok yang terdiri dari 4 bagian yang sama nilainya



Screen Shot 2022-02-18 at 20.50.32.png

Pada batang merah jambu
= = = = =
Pecahan ini semua bernilai sama
Pada batang hijau
= = =
Pecahan ini semua bernilai sama


bagaimana mendapatkan pecahan senilai?
Dengan mengalikan pembilang dan penyebut dengan bilangan yang sama.
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination


Perhatikan beberapa contoh pecahan senilai dalam video dibawah ini.


{{#ev:YouTube |id= PoTTD3yRsEg |width=640 |height=400 }}



  • Aktivitas 2

Tujuan: siswa mengerjakan secara cepat soal-soal mengenai pecahan senilai

Mengerjakan Latihan 2 dari buku Pecahan (buku 4)



Menyederhanakan Pecahan

Pecahan :: dapat disederhanakan menjadi
Tapi bisa juga disederhanakan menjadi

Atau

Dari pecahan-pecahan senilai itu adalah yang nilai pembilang dan penyebutnya terkecil yaitu .

Pecahan dengan pembilang dan penyebutnya terkecil ini dinamakan pecahan sederhana.

Proses membuat suatu pecahan menjadi pecahan sederhana dinamakan proses penyederhanaan pecahan.

Misal
dapat disederhanakan menjadi

Cara menyederhanakan pecahan adalah membagi pembilang dan penyebut dengan suatu bilangan yang sama.

Untuk menyederhanakan :: menjadi kita dapat membagi pembilang dan penyebutnya dengan 3.

Error creating thumbnail: Unable to save thumbnail to destination

Untuk menyederhanakan menjadi kita dapat membagi pembilang dan penyebutnya dengan 6.

Error creating thumbnail: File missing


Untuk bilangan yang agak besar, kita dapat membagi pembilang dan penyebutnya berulang-ulang sampai kita dapat pecahan yang paling sederhana.

Screen Shot 2022-02-19 at 05.27.01.png


Beberapa contoh menyederhanakan pecahan bisa dilihat dalam video ini


{{#ev:YouTube |id= PS1leZn06us |width=640 |height=400 }}


  • Aktivitas 3

Tujuan: siswa mengerjakan secara cepat soal-soal mengenai pecahan senilai

Mengerjakan Latihan 3 dari buku Pecahan (buku 4)

Operasi Penjumlahan dan Pengurangan Pecahan dengan Penyebut sama

Penjumlahan

Disini kita membatasi pembahasan pada nilai pembilang tidak melebihi nilai penyebut.


Gambar ini adalah pecahan


Screen Shot 2022-02-19 at 05.38.11.png
menunjukan nilai 2 bagian dari suatu kelompok yang terdiri dari 8 bagian yang sama nilainya
Kemudian kita tambahkan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{8}}
Kemudian kita tambahkan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{8}}


Screen Shot 2022-02-19 at 05.38.22.png
Hasilnya dengan mudah terlihat Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{8}}
Screen Shot 2022-02-19 at 05.38.32.png
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{8}} menunjukan 3 bagian dari suatu kelompok yang terdiri dari 8 bagian yang sama nilainya.

Contoh lain:

Screen Shot 2022-02-19 at 05.51.42.png

Apa yang kita bisa simpulkan?

Dalam menjumlahkan pecahan dengan penyebut sama, kita hanya menambahkan pembilangnya saja sedangkan penyebut (atau kelompoknya) tetap sama.


Lihat video beberapa contoh penjumlahan pecahan dengan penyebut sama

{{#ev:YouTube |id= rJm6Rb-47eI |width=640 |height=400 }}



  • Aktivitas 4

Tujuan: siswa mengerjakan secara cepat soal-soal mengenai pecahan senilai

Mengerjakan Latihan 4 dari buku Pecahan (buku 4)

Pengurangan

3 kotak biru dalam gambar ini menunjukan pecahan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{5} }

Error creating thumbnail: Unable to save thumbnail to destination
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{5} } menunjukan nilai 3 bagian dari suatu kelompok yang terdiri dari 5 bagian yang sama nilainya.

Kemudian kita ambil dua kotak biru

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{5} } - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{5} }
Error creating thumbnail: Unable to save thumbnail to destination

Hasilnya terlihat sama dengan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{5} }

menunjukan nilai 1 bagian dari suatu kelompok yang terdiri dari 5 bagian yang sama nilainya.


Contoh lain:

Error creating thumbnail: Unable to save thumbnail to destination

Apa yang kita bisa simpulkan?

Dalam melakukan pengurangan pecahan dengan penyebut sama, kita hanya mengurangkan pembilangnya saja sedangkan penyebut (atau kelompoknya) tetap sama.


Lihat video untuk beberapa contoh pengurangan dengan penyebut sama.



{{#ev:YouTube |id= k-N2vsimlQY |width=640 |height=400 }}



  • Aktivitas 5

Tujuan: siswa mengerjakan secara cepat soal-soal mengenai pengurangan dengan penyebut sama

Mengerjakan Latihan 14 dari buku Pecahan (buku 4)

Konsep SATU

Ini 1 jeruk, kita potong menjadi 2 bagian yang sama besar.

Screen Shot 2022-02-19 at 06.55.46.png

Satu bagian jeruk ini nilainya adalah Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2} } jeruk.

Karena itu maka

(jeruk) + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2} } (jeruk) = 1 (jeruk)

Atau kita hilangkan konteksnya, kita peroleh

+ Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2} } = 1


Namun kita tahu bahwa

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2} } + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{2} }


Sehingga kita bisa simpulkan bahwa

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{2} } = 1


Contoh lain

Kita punya 1 batang kuning, kemudian batang itu kita potong menjadi 4 bagian yang sama nilainya.

Berapa seperempat batang kuning ditambah seperempat batang kuning ditambah seperempat batang kuning ditambah seperempat batang kuning ?


Error creating thumbnail: Unable to save thumbnail to destination
Jawabnya 1 batang kuning

Screen Shot 2022-02-19 at 08.57.08.png

(batang kuning) + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4} } (batang kuning) + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4} } (batang kuning) + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4} } (batang kuning)= 1 (batang kuning)

Namun kita tahu bahwa

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4} } + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4}} +Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4} } + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4}} =


Sehingga boleh dikatakan bahwa

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4}{4} } = 1


karena Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{2} } = 1 dan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4}{4} } = 1 maka kita boleh tuliskan,

= Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4}{4} } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{10}{10} } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{178}{178} } = 1


Jadi bisa disimpulkan bahwa dalam pecahan arti bilangan 1 adalah sebagai berikut

1 adalah nilai 2 bagian dari satu kelompok yang terdiri dari 2 bagian yang sama nilainya.
1 adalah nilai 3 bagian dari satu kelompok yang terdiri dari 3 bagian yang sama nilainya.
1 adalah nilai 5 bagian dari satu kelompok yang terdiri dari 5 bagian yang sama nilainya.

Video berikut ini menjelaskan konsep "satu'

{{#ev:YouTube |id= U8rmQGhGgew |width=640 |height=400 }}


  • Aktivitas 6

Tujuan: siswa mengerjakan secara cepat soal-soal mengenai konsep "satu"

Mengerjakan Latihan 5 dari buku Pecahan (buku 4)

Pecahan adalah Bagi

Apakah pecahan itu adalah bagi?
Apakah = 1 ÷ 2 ?

Untuk menjawab ini, mari kita lihat gambar ini

Error creating thumbnail: Unable to save thumbnail to destination
Disini kita punya 1 kue berwarna hijau. Kue ini hendak dimasukan dalam 2 kotak secara adil, berapa isi masing-masing kotak?
Untuk itu kita menuliskannya dalam bentuk 1 ÷ 2 = ?

Screen Shot 2022-02-19 at 13.25.41.png

Jawabnya: isi masing-masing kotak adalah separuh kue

Sekarang kita perhatikan gambar separuh kue.

Screen Shot 2022-02-19 at 13.30.46.png

Menurut definisi pecahan,

separuh atau setengah kue menunjukan nilai 1 bagian dari satu kue yang terdiri dari dua bagian yang sama nilainya.
Ini ditulis Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2} } kue

Jadi kita bisa katakan bahwa

Separuh kue adalah hasil pembagian dari 1 kue dibagi 2
Separuh kue sama dengan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2} } kue

Dengan demikian kita bisa katakan bahwa

:: 1 kue ÷ 2 nilainya sama  dengan  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2} }
 kue

ditulis

1 ÷ 2 = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2} }

Ini juga berlaku untuk pecahan-pecahan lain seperti:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{5} } nilainya sama dengan 1 dibagi 5
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{7} } nilainya sama dengan 1 dibagi 7
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{12} } nilainya sama dengan 1 dibagi 12

Sekarang kalau pembilangnya bukan 1, apakah "pecahan itu nilainya sama dengan pembagian" masih berlaku?

Apakah Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4}{2} } nilainya sama dengan 4 dibagi 2 ?

Untuk hal ini kita lihat pelajaran sebelumnya tentang 1.

pada pelajaran sebelumnya 1 boleh didefinisikan sebagai nilai 2 bagian dari suatu kelompok yang terdiri dari 2 bagian yang sama besar.

Atau

1 = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{2} }

Dengan hasil itu kita bisa menulis,

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4}{2}} = + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{2} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4}{2}} = 1 + 1 = 2
Ternyata Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4}{2}} = 2!
pembagian 4 ÷ 2 hasilnya adalah 2 juga

Dengan demikian maka bisa dikatakan

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4}{2}} nilainya sama dengan 4 dibagi 2 = 2

Jadi pecahan itu mempunyai kaitan yang erat dengan pembagian. Keduanya mempunyai nilai yang sama walaupun secara konsep berbeda.


Untuk jelasnya lihat video berikut ini


{{#ev:YouTube |id= raii20Dvoxg |width=640 |height=400 }}


  • Aktivitas 7

Tujuan: siswa mengerjakan secara cepat soal-soal mengenai konsep pecahan dan bagi

Mengerjakan Latihan 7 dari buku Pecahan (buku 4)

Pecahan Majemuk

Berapa Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{3}} + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{3}} ?

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{3}} + = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4}{3}}

Kita bisa sederhanakan pecahan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{3}} dengan menggunakan konsep satu atau konsep pecahan dan bagi.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4}{3}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{3}} + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}}
Karena Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{3}} = 1, maka
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4}{3}} = 1 + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}} = 1Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}}


Dimana kita definisikan bilangan bulat + pecahan sebagai bilangan bulat pecahan

bentuk bilangan bulat pecahan seperti 1Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}} dinamakan pecahan campuran atau pecahan majemuk.

Perhatikan beberapa contoh berikut:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{5}{3}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{3}} + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{3}} = 1Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{3}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{7}{5}} = + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{5}} = 1Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{5}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{12}{7}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{7}{7}} + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{5}{7}} = 1Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{5}{12}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{25}{23}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{23}{23}} + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{23}} = 1Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{23}}


= + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} = 3


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{11}{3}} = + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{3}} = 3Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{3}}


Perhatikan contoh dalam video berikut


{{#ev:YouTube |id= RFgSVEUixCc |width=640 |height=400 }}



  • Aktivitas 8

Tujuan: siswa mengerjakan secara cepat soal-soal mengenai pecahan majemuk

Mengerjakan Latihan 6 dari buku Pecahan (buku 4)

Penjumlahan dan Pengurangan dengan Penyebut berbeda

Pada bagian ini kita akan melakukan operasi penjumlahan dan pengurangan dengan penyebut berbeda.


Penjumlahan Pecahan

Bagaimana menghitung Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}}  ?

Disini penyebutnya berbeda.
Kita harus ubah penyebutnya sehingga sama.

Bagaimana caranya?

Kita lihat konkretnya dulu

Ini ada batang Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} hendak ditambahkan dengan batang Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}} .


Error creating thumbnail: File missing

Agar kedua batang ini bisa dijumlahkan maka kelompoknya harus disamakan.

Cara menyamakan kelompok adalah sebagai berikut:

Pada pecahan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} , tiap bagian kita potong menjadi 3 bagian yang identik. Sehingga kelompoknya menjadi kelompok 6.

Pada pecahan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}} , tiap bagian kita potong menjadi 2 bagian yang identik. Sehingga kelompoknya menjadi kelompok 6.

Nah sekarang kedua pecahan mempunyai kelompok yang sama.

Error creating thumbnail: File missing

Secara abstrak ini dituliskan

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} dijadikan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{6}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}} dijadikan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{6}}

Sehingga kita peroleh

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{6}} + =


Cara Konkret lain adalah menggunakan Papan pecahan.

Misal kita akan menghitung Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}} =

Ini adalah Papan pecahan.

Error creating thumbnail: Unable to save thumbnail to destination


Pertama kita lihat batang mana yang besarnya sama dengan batang Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} .

Ternyata Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{4}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{6}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4}{8}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{5}{10}} dst (bagian yang berwarna biru)

Screen Shot 2022-02-22 at 11.30.24.png


Kemudian kita lihat batang mana yang besarnya sama dengan batang Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}}

Ternyata Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{6}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{9}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4}{12}} dst (bagian yang berwarna merah)

Screen Shot 2022-02-22 at 11.31.55.png


Kita lihat mana penyebut yang sama dari kedua kelompok ini?

Jawabnya adalah 6.

Kita gabungkan kedua nilai pecahan diatas seperti pada gambar

Screen Shot 2022-02-22 at 11.32.35.png

Jadi Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{5}{6}}


Cara lain (abstrak) mendapat penyebut 6 untuk soal di atas.

Cara termudah adalah

Mengalikan penyebut pecahan yang dijumlahkan yaitu 3 x 2

Cara lain:

Dengan mencari bilangan terkecil yang bisa dibagi 2 dan bisa dibagi 3.

Apakah penyebutnya boleh 12? Bukankah 12 juga bisa dibagi 2 atau dibagi 3?

Boleh namun hasilnya nanti kamu harus sederhanakan lagi
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{6}{12}} + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4}{12}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{10}{12}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{5}{6}}

Kita boleh mengubah pecahan menjadi 6, 12, 18, 24 dsb. Tetapi sebaiknya ambil yang terkecil yaitu 6.



Bagaimana menghitung Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4}} + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{6}} = ?

Kita ubah penyebutnya menjadi 4 x 6 = 24
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4}} + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{6}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{6}{24}} + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4}{24}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{10}{24}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{5}{12}}

Atau

cari bilangan yang bisa dibagi 4 dan 6. Dalam hal ini bilangannya adalah 12, 24, 36 dsb.
Kita pilih bilangan yang terkecil yaitu 12.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4}} + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{6}} = + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{12}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{5}{12}}


Bagaimana dengan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{5}} + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{10}} = ?

kita ubah penyebutnya menjadi 5 x 10 = 50
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{5}} + = + = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{35}{50}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{7}{10}}

Atau

Cari bilangan yang bisa dibagi 5 dan bisa dibagi 10. Dalam hal ini bilangannya adalah 10, 20, 30, 40 dst..
Kita pilih bilangan yang terkecil yaitu 10
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{5}} + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{10}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4}{10}} + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{10}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{7}{10}}



Berikut ini adalah beberapa contoh penjumlahan pecahan

{{#ev:YouTube |id= 1iqMwdBkLf8 |width=640 |height=400 }}

1

Penjumlahan cepat

Perhatikan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{5}} + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{10}} =

Penyebutnya dijadikan 5 x 10

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{lcl} \frac{2}{5} + \frac{3}{10} & = & \frac{2 \times 10}{5 \times 10} + \frac{3 \times 5}{10 \times 5} \\ & = & \frac{20}{50} + \frac{15}{50} \\ & = & \frac{35}{50} \\ & = & \frac{7}{10} \end{array} }


Lihat beberapa contoh berikut

a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4}{5}} + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{3}} =

Penyebutnya dijadikan 5 x 3


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{lcl} \frac{4}{5} + \frac{2}{3} & = & \frac{4 \times 3}{5 \times 3} + \frac{2 \times 5}{3 \times 5} \\ & = & \frac{12}{15} + \frac{10}{15} \\ & = & \frac{22}{15} \\ & = &1 \frac{7}{15} \end{array} }


b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{4}} =

Penyebutnya dijadikan 2 x 4


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{lcl} \frac{1}{2} + \frac{3}{4} & = & \frac{1 \times 4}{2 \times 4} + \frac{3 \times 2}{4 \times 2} \\ & = & \frac{4}{8 } + \frac{6}{8 } \\ & = & \frac{10}{8} \\ & = & \frac{5}{4} \\ & = & 1\frac{1}{4} \end{array} }


c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}} + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{5}} =

Penyebutnya dijadikan 3 x 5


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{lcl} \frac{1}{3} + \frac{3}{5} & = & \frac{1 \times 5}{3 \times 5} + \frac{3 \times 3}{5 \times 3} \\ & = & \frac{5}{15} +\frac{9}{15} \\ & = & \frac{14}{15} \end{array} }


d) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{5}} + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{7}} =

Penyebutnya dijadikan 5 x 7


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{lcl} \frac{2}{5} + \frac{3}{7} & = & \frac{2 \times 7}{5 \times 7} + \frac{3 \times 5}{7 \times 5} \\ & = & \frac{14}{35} +\frac{15}{35} \\ & = & \frac{29}{35} \end{array} }

Ada cara yang dilakukan orang untuk mempercepat perhitungan yaitu dengan pola perkalian silang. Namun di Gasing kami tidak terlalu merekomendasikan cara ini. Karena anak jadi kehilangan konsep menjumlah atau mengurangi pecahan. Yang diingat adalah rumus.

Error creating thumbnail: Unable to save thumbnail to destination


Video berikut ini menunjukan beberapa contoh menyelesaikan penjumlahan pecahan dengan cara cepat.


{{#ev:YouTube |id= buzx2IqTY6o |width=640 |height=400 }}


  • Aktivitas 9

Tujuan: siswa mengerjakan secara cepat soal-soal mengenai penjumlahan pecahan dengan beda penyebut

Mengerjakan Latihan 11-12 dari buku Pecahan (buku 4)



Pengurangan Pecahan

Pengurangan pecahan dengan penyebut berbeda sama konsepnya dengan penjumlahan pecahan dengan penyebut berbeda.

Mereka yang sudah mahir penjumlahan pecahan akan sangat cepat mengerti pengurangan pecahan ini.

Misalnya bagaimana menghitung Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4}} - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{6}} = ?

Kita ubah penyebutnya menjadi 4 x 6 = 24
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4}} - = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{6}{24}} - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4}{24}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{24}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{12}}

Atau

cari bilangan yang bisa dibagi 4 dan 6. Dalam hal ini bilangannya adalah 12, 24, 36 dsb.
Kita pilih bilangan yang terkecil yaitu 12.
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{6}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{12}} - = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{12}}


Bagaimana dengan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{5}} - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{10}} = ?

kita ubah penyebutnya menjadi 5 x 10 = 50
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{5}} - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{10}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{20}{50}} - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{15}{50}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{5}{50}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{10}}

Atau

Cari bilangan yang bisa dibagi 5 dan bisa dibagi 10. Dalam hal ini bilangannya adalah 10, 20, 30, 40 dst..
Kita pilih bilangan yang terkecil yaitu 10
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{10}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4}{10}} - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{10}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{10}}


Lihat video cara mengerjakan pengurangan pecahan dengan penyebut berbeda


{{#ev:YouTube |id= 11fENTTJJ4o |width=640 |height=400 }}


Pengurangan cara cepat

Pola pengurangan pecahan cara cepat sama dengan pola penjumlahan pecahan cara cepat.

Perhatikan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{5}} - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{10}} =

Penyebutnya dijadikan 5 x 10

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{lcl} \frac{2}{5} - \frac{3}{10} & = & \frac{2 \times 10}{5 \times 10} - \frac{3 \times 5}{10 \times 5} \\ & = & \frac{20}{50} -\frac{15}{50} \\ & = & \frac{5}{50} \\ & = & \frac{1}{10} \end{array} }


Bagaimana dengan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4}{5}} - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{7}} = ?

Penyebutnya dijadikan 5 x 7


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{lcl} \frac{4}{5} - \frac{3}{7} & = & \frac{4 \times 7}{5 \times 7} - \frac{3 \times 5}{7 \times 5} \\ & = & \frac{28}{35} -\frac{15}{35} \\ & = & \frac{13}{35} \end{array} }


Lihat video berikut ini untuk beberapa contoh pengurangan cara cepat


{{#ev:YouTube |id= c3tZ95x8crc |width=640 |height=400 }}



  • Aktivitas 10

Tujuan: siswa mengerjakan secara cepat soal-soal mengenai penjumlahan pecahan dengan beda penyebut

Mengerjakan Latihan 15-16 dari buku Pecahan (buku 4)



Pecahan Negatif (cara cepat)

Konsep pecahan negatif, mirip dengan konsep bilangan bulat negatif.

Misalnya kita punya suatu garis bilangan. Tiap titik yang berdekatan berbeda Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{5}}

Screen Shot 2022-02-22 at 09.49.32.png


Dari titik 0 ke kanan, nilai tiap titik berturut-turut adalah dst.

Dari titik 0 ke kiri, nilai tiap titik berturut-turut adalah Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{1}{5}, -\frac{2}{5}, -\frac{3}{5} } dst.

Operasi penjumlahan dan pengurangan bilangan pecahan negatif, adalah seperti operasi bilangan bulat negatif.

Berikut ini adalah beberapa contoh operasi bilangan pecahan negatif.


a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{4}{5}} + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{7}} =

Penyebutnya dijadikan 5 x 7



b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{4}{5}} - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{7}} =

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{lcl} -\frac{4}{5} - \frac{3}{7} & = & \frac{-4 \times 7}{5 \times 7} - \frac{3 \times 5}{7 \times 5} \\ & = & \frac{-28}{35} -\frac{15}{35} \\ & = & \frac{-43}{35} \\ & = &- 1\frac{8}{35} \end{array} }


Beberapa contoh penjumlahan dan pengurangan bilangan pecahan negatif dapat dilihat dalam video ini

{{#ev:YouTube |id= VpMnTBKeF6c |width=640 |height=400 }}




Pecahan Biasa dan Pecahan Majemuk

Pecahan Biasa ke Pecahan Majemuk

Bagaimana menyederhanakan pecahan yang pembilangnya besar tetapi penyebutnya kecil seperti

kita gunakan konsep pecahan dan bagi.
44 ÷ 7 = 6 sisa 2
Hasil bilangan bulatnya kita ambil, dan sisanya kita jadikan pecahan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{7}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{44}{7}} = 6


Mari kita buktikan

= Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{42}{7}} + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{7}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{44}{7}} = 6 +
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{44}{7}} = 6 Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{7}}


Perhatikan beberapa contoh ini


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{43}{8} = ?}

43 ÷ 8 = 5 sisa 3
= 5Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{8}}


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{25}{4} = ?}

25 ÷ 4 = 6 sisa 1
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{25}{4}} = 6


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{101}{9} = ?}

101 ÷ 9 = 11 sisa 2
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{101}{9}} = 11Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{9}}


Lihat beberapa contoh mengubah pecahan atau pecahan biasa menjadi pecahan majemuk dalam video berikut.


{{#ev:YouTube |id= kXpA84IhSJk |width=640 |height=400 }}



Pecahan Majemuk ke Pecahan Biasa

Bagaimana mengubah pecahan majemuk menjadi pecahan biasa atau pecahan murni?

Bagaimana mengubah 2 menjadi pecahan biasa?

Perhatikan langkah-langkahnya pada contoh berikut ini lalu lihat polanya dan buat kesimpulan



Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{lcl} 3\frac{1}{3}& = & 3 + \frac{1}{3} \\ & = & \frac{9}{3} + \frac{1}{3} \\ & = & \frac{10}{3} \end{array} }


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{lcl} 5\frac{2}{7}& = & 5 + \frac{2}{7} \\ & = & \frac{35}{7} + \frac{2}{7} \\ & = & \frac{37}{7} \end{array} }


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{lcl} 4\frac{3}{5}& = & 4 + \frac{3}{5} \\ & = & \frac{20}{5} + \frac{3}{5} \\ & = & \frac{23}{5} \end{array} }


Video ini menunjukan contoh-contoh mengubah pecahan majemuk menjadi pecahan biasa.

{{#ev:YouTube |id= 49bF9cjeOY8 |width=640 |height=400 }}


  • Aktivitas 11

Tujuan: siswa mengerjakan secara cepat soal-soal mengenai penjumlahan pecahan dengan beda penyebut

Mengerjakan Latihan 9 - 10 dari buku Pecahan (buku 4)


Titik Kritis

Titik Kritis untuk pecahan dicapai kalau siswa sudah mampu menguasai penjumlahan dan pengurangan seperti berikut ini

Screen Shot 2022-02-22 at 11.58.49.png


Model 1 : Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 + \frac{5}{7} }

Penjumlahan bilangan bulat dengan pecahan dapat dilakukan sebagai berikut:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 + \frac{5}{7} } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 \frac{5}{7} }
= Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3 \frac{3}{10} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 7 + \frac{2}{9} } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 7 \frac{2}{9} }
=


Dapatkah Anda menemukan polanya?

Mudah kan?


{{#ev:YouTube |id= _2gcqSKbjD0 |width=640 |height=400 }}




Model 2 : Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 - \frac{5}{7} }

Penjumlahan bilangan bulat dengan pecahan untuk model 2 ini mirip dengan model 1.

Perhatikan contoh berikut

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 - \frac{5}{7} } =
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -3 - \frac{3}{10} } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -3 \frac{3}{10} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -7 - \frac{2}{9} } =
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -25 - \frac{5}{12} } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -25 \frac{5}{12} }


Dapatkah Anda menemukan polanya?

Mudah kan?


{{#ev:YouTube |id= 3C62l5SbC_M |width=640 |height=400 }}



Model 3 :

Model 3 ini berbeda dengan model 1 dan 2.

  • Langkah pertama adalah menghitung bentuk
Cara mengerjakannya adalah mengubah 1 menjadi Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{7}{7} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1 - \frac{5}{7} } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{7}{7} - \frac{5}{7} } =

Lihat beberapa contoh berikut

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1 - \frac{3}{11} } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{11}{11} - \frac{3}{11} } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{8}{11} }
= = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{5} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1 - \frac{5}{8} } = = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{8} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1 - \frac{4}{27} } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{27}{27} - \frac{4}{27} } =


  • Langkah kedua adalah memecah bilangan bulatnya menjadi 1 dan sisanya
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 - \frac{5}{7} } = 1 + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1 - \frac{5}{7}) } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1 + \frac{2}{7} } =


Perhatikan contoh berikutnya

= 4 + = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4 + \frac{2}{7} } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4 \frac{2}{7} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 7 - \frac{5}{7} } = 6 + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1 - \frac{5}{7}) } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 6 + \frac{2}{7} } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 6 \frac{2}{7} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 6 - \frac{5}{7} } = 5 + = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 5 + \frac{2}{7} } =
= 22 + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1 - \frac{5}{7}) } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 22 + \frac{2}{7} } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 22 \frac{2}{7} }


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 5 - \frac{2}{9} } = 4 + = =
= 6 + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1 - \frac{3}{11}) } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 6 + \frac{8}{11} } =
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 6 - \frac{4}{5} } = 5 + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1 - \frac{4}{5}) } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 5 + \frac{1}{5} } =
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 23 - \frac{7}{12} } = 22 + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1 - \frac{7}{12}) } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 22 + \frac{5}{12} } =


Bisakah Anda melihat polanya?

{{#ev:YouTube |id= 77O3rzMluRQ |width=640 |height=400 }}


  • Aktivitas 12

Tujuan: siswa mengerjakan secara cepat soal-soal mengenai model 3 titik kritis

Mengerjakan Latihan 15-18 dari buku Pecahan (buku 4)



Model 4 : Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 + \frac{5}{7} }

Model 4 ini berbeda dengan model sebelumnya.

  • Langkah pertama adalah menghitung bentuk Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -1 + \frac{5}{7} }
Cara mengerjakannya adalah mengubah -1 menjadi Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{7}{7} }
= = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{2}{7} }

Lihat beberapa contoh berikut

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -1 + \frac{3}{11} } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{11}{11} + \frac{3}{11} } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{8}{11} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -1 + \frac{4}{5} } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{5}{5} + \frac{4}{5} } =
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -1 + \frac{5}{8} } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{8}{8} + \frac{5}{8} } =
= Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{27}{27} + \frac{4}{27} } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{23}{27} }


  • Langkah kedua adalah memecah bilangan bulatnya menjadi -1 dan sisanya
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 + \frac{5}{7} } = -1 + = = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -1 \frac{2}{7} }


Perhatikan contoh berikutnya

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -5 + \frac{5}{7} } = -4 Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-1 + \frac{5}{7}) } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -4 - \frac{2}{7} } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -4 \frac{2}{7} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -7 + \frac{5}{7} } = -6 = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -6 -\frac{2}{7} } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -6 \frac{2}{7} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -6 + \frac{5}{7} } = -5 = = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -5 \frac{2}{7} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -23 + \frac{5}{7} } = -22 Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-1 + \frac{5}{7}) } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -22 - \frac{2}{7} } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -22 \frac{2}{7} }


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -5 + \frac{2}{9} } = -4 = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -4 -\frac{7}{9} } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -4 \frac{7}{9} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -7 + \frac{3}{11} } = -6 = =
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -6 + \frac{4}{5} } = -5 Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-1 + \frac{4}{5}) } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -5 - \frac{1}{5} } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -5 \frac{1}{5} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -23 + \frac{7}{12} } = -22 Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-1 + \frac{7}{12}) } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -22 - \frac{5}{12} } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -22 \frac{5}{12} }


Bisakah Anda melihat polanya?



{{#ev:YouTube |id= yxicBxkmBlw |width=640 |height=400 }}

  • Aktivitas 13

Tujuan: siswa mengerjakan secara cepat soal-soal mengenai model 3 titik kritis

Mengerjakan Latihan 19-22g dari buku Pecahan (buku 4)


Penjumlahan dan Pengurangan Pecahan Majemuk

Pada bagian ini kita belajar bagaiman melakukan penjumlahan dan pengurangan pecahan majemuk.

Ada 4 macam jenis bentuk soal-soal penjumlahan dan pengurangan pecahan majemuk ini.



model 1 : Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\frac{2}{5} + 3\frac{3}{7} }

Pada model ini Pecahan Majemuk positif ditambah Pecahan Majemuk positif.

Contoh :

  • Langkah pertama: jumlahkan bilangan bulatnya
2 + 3 = 5
  • Langkah kedua : jumlahkan pecahannya

  • Langkah ketiga : Jumlahkan bilangan bulat dan hasil pecahan
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 5 + 1\frac{5}{56} } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 6\frac{5}{56} }

Jadi

= Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 6\frac{5}{56} }


Dalam video ini terdapat beberapa contoh lain penjumlahan model 1 ini.

{{#ev:YouTube |id= bul1s5UjLsA |width=640 |height=400 }}


model 2 : Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2\frac{2}{5} - 3\frac{3}{7} }

Pada model ini Pecahan Majemuk negatif ditambah Pecahan Majemuk negatif.

Contoh : Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 \frac{5}{7} - 3 \frac{3}{8} }

  • Langkah pertama: jumlahkan bilangan bulatnya
-2 - 3 = -5
  • Langkah kedua : jumlahkan pecahannya (ingat

  • Langkah ketiga : Jumlahkan bilangan bulat dan hasil pecahan
= Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle - 6\frac{5}{56} }

Jadi

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 \frac{5}{7} - 3 \frac{3}{8} } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -6\frac{5}{56} }


Dalam video ini terdapat beberapa contoh lain penjumlahan model 2 ini.

{{#ev:YouTube |id= 0Kw7CmMXKoI |width=640 |height=400 }}


model 3 : Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\frac{2}{5} - 3\frac{3}{7} }

Pada model ini Pecahan Majemuk positif dikurangi Pecahan Majemuk positif.

Contoh :

  • Langkah pertama: kurangkan bilangan bulatnya
2 - 3 = -1
  • Langkah kedua : kurangkan pecahannya

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{lcl} \frac{5}{7} - \frac{3}{8} & = & \frac{5 \times 8}{7 \times 8} - \frac{7 \times 3}{7 \times 8} \\ & = & \frac{40}{56} - \frac{21}{56} \\ & = & \frac{19}{56} \end{array} }

  • Langkah ketiga : Jumlahkan bilangan bulat dan hasil pecahan
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -1 + \frac{19}{56} } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{37}{56} }

Jadi

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 \frac{5}{7} - 3 \frac{3}{8} } =


Dalam video ini terdapat beberapa contoh lain penjumlahan model 3 ini. {{#ev:YouTube |id= bul1s5UjLsA |width=640 |height=400 }}


model 4 : Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2\frac{2}{5} + 3\frac{3}{7} }

Pada model ini Pecahan Majemuk negatif ditambah Pecahan Majemuk positif.

Contoh :

  • Langkah pertama: jumlahkan bilangan bulatnya
-2 + 3 = 1
  • Langkah kedua : jumlahkan pecahannya (ingat

  • Langkah ketiga : Jumlahkan bilangan bulat dan hasil pecahan
= Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{37}{56} }

Jadi

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 \frac{5}{7} + 3 \frac{3}{8} } =


Dalam video ini terdapat beberapa contoh lain penjumlahan model 4 ini.

{{#ev:YouTube |id= 0Kw7CmMXKoI |width=640 |height=400 }}



  • Aktivitas 13

Tujuan: siswa mengerjakan secara cepat soal-soal mengenai penjumlahan bilangan pecahan majemuk.

Mengerjakan Latihan 23 dari buku Pecahan (buku 4)


Perkalian Pecahan

Pembahasan perkalian pecahan akan kita bagi dalam 4 bagian

  • Perkalian bilangan bulat dengan pecahan
  • Perkalian pecahan dengan bilangan bulat
  • Perkalian pecahan dengan pecahan
  • Perkalian pecahan majemuk


Bilangan Bulat x bilangan Pecahan

Perkalian bilangan pecahan menggunakan dasar konsep perkalian bilangan bulat yang sudah dipelajari sebelumnya.
Dalam perkalian bilangan bulat kita tentu masih ingat bahwa 3 x 2 artinya 3 kotak isi 2, yaitu konkretnya ada 3 kotak yang masing-masing isinya 2 benda.

Screen Shot 2022-02-23 at 04.23.02.png

Jadi hasilnya (abstrak) adalah 3 x 2 = 3▢2 = = 2 + 2 + 2 = 6.
Sekarang bagaimana dengan 2 x Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}}  ?
2 x Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} artinya 2 kotak isi Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}}
Konkretnya ada 2 kotak yang masing-masing berisi benda.
Error creating thumbnail: Unable to save thumbnail to destination


Jadi, abstraknya adalah

2 x = 2▢Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} = + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{2}} = 1

Begitu pula

3 x = 3▢Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} = + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} =

Kongkretnya digambarkan sebagai 3 kotak masing-masing berisi


Screen Shot 2022-02-23 at 04.24.12.png


Lakukan kegiatan eksplorasi perkalian bilangan bulat dengan pecahan seperti di atas dengan berbagai soal sehingga siswa menemukan pola bagaimana mendapatkan hasilnya dengan cepat, yaitu dengan mengalikan bilangan bulat dengan pembilang.

Contohnya
3 x Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{5}} = 3▢Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{5}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{5}} + + Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{5}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3 \times 2}{5}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{6}{5}}
Cara cepat

Screen Shot 2022-02-23 at 05.01.44.png


Video berikut menunjukan beberapa contoh perkalian bilangan bulat dengan bilangan pecahan.

{{#ev:YouTube |id= NZqqy1RcQ30 |width=640 |height=400 }}



Bilangan Pecahan x Bilangan Bulat

Bagaimana dengan perkalian bilangan pecahan dengan bilangan bulat seperti Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} x 6 ?
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} x 6 artinya Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} kotak isi 6.
Jadi konkretnya ada 6 kue dalam suatu kotak lalu kita bagi kotak tersebut menjadi 2 bagian yang sama besar (sehingga banyaknya kue dalam tiap bagian sama). lalu kita hitung berapa isi 1 bagiannya itu.
Hasilnya adalah 3


Screen Shot 2022-02-23 at 05.09.05.png

Jadi Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} x 6 = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} ▢6 = 3
Sekarang bagaimana dengan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}} x 6 = ?
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}} x 6 artinya Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}} kotak isi 6, jadi konkretnya ada 6 kue dalam suatu kotak lalu kita bagi kotak tersebut menjadi 3 bagian yang sama besar (sehingga banyaknya kue dalam tiap bagian sama). Lalu kita hitung berapa isi satu bagian kotak itu?
Hasilnya adalah 2

Screen Shot 2022-02-23 at 05.09.12.png

Jadi Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}} x 6 = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}} ▢6 = 2


Bagaimana dengan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}} x 9 = ?
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}} x 9 artinya Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}} kotak isi 9, jadi konkretnya ada 9 kue dalam suatu kotak lalu kita bagi kotak tersebut menjadi 3 bagian yang sama besar (sehingga banyaknya kue dalam tiap bagian sama). Lalu kita hitung berapa isi satu bagian kotak itu?
Hasilnya adalah 3

Screen Shot 2022-02-23 at 05.09.25.png

Jadi Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}} x 9 = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}} ▢9 = 3


Perhatikan hasil-hasil yang kita peroleh

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} x 6 hasilnya sama dengan membayangkan 6÷2 yaitu 3
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}} x 6 hasilnya sama dengan membayangkan 6÷3 yaitu 2
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}} x 9 hasilnya sama dengan membayangkan 9÷3 yaitu 3

Kesimpulan apa yang kita peroleh?

Kita lihat bahwa perkalian pecahan dengan bilangan bulat sama dengan pembagian bilangan bulat itu dengan penyebut.

Screen Shot 2022-02-23 at 09.56.59.png


Bagaimana dengan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{3}} x 9 = ?
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{3}} x 9 artinya Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{3}} kotak isi 9, jadi konkretnya ada 9 benda dalam suatu kotak lalu kita bagi kotak tersebut menjadi 3 bagian yang sama besar (sehingga banyaknya kue dalam tiap bagian sama). Lalu kita hitung berapa isi dua bagian kotak itu?
Hasilnya adalah 2 x 3 = 6 benda

Hasilnya dapat digambarkan sebagai berikut. Hasilnya adalah 6 kue yang ada dalam daerah yang diarsir.

Screen Shot 2022-02-23 at 05.09.42.png


Berikut ini beberapa contoh perkalian pecahan dengan bilangan bulat

a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{4}} x 12 = ?
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{4}} x 12 artinya Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{4}} kotak isi 12, jadi konkretnya ada 12 benda dalam suatu kotak lalu kita bagi kotak tersebut menjadi 4 bagian yang sama besar (sehingga banyaknya kue dalam tiap bagian sama). Lalu kita hitung berapa isi tiga bagian kotak itu?
Hasilnya adalah 3 x 3 = 9 benda
Error creating thumbnail: Unable to save thumbnail to destination


b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{5}{6}} x 30 = ?
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{5}{6}} x 30 artinya Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{5}{6}} kotak isi 30, jadi konkretnya ada 30 benda dalam suatu kotak lalu kita bagi kotak tersebut menjadi 6 bagian yang sama besar (sehingga banyaknya kue dalam tiap bagian sama). Lalu kita hitung berapa isi lima bagian kotak itu?
Hasilnya adalah 5 x 5 = 25 benda

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{5}{6}} x 30 = 25

Screen Shot 2022-02-23 at 05.10.32.png


c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{5}{7}} x 49 = ?
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{5}{7}} x 49 artinya Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{5}{7}} kotak isi 49, jadi konkretnya ada 49 benda dalam suatu kotak lalu kita bagi kotak tersebut menjadi 7 bagian yang sama besar (sehingga banyaknya kue dalam tiap bagian sama). Lalu kita hitung berapa isi lima bagian kotak itu?
Hasilnya adalah 7x 5 =35 benda

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{5}{7}} x 49 = 35

Error creating thumbnail: Unable to save thumbnail to destination


d) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{7}{9}} x 18 = ?
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{7}{9}} x 18 artinya Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{7}{9}} kotak isi 18, jadi konkretnya ada 18 benda dalam suatu kotak lalu kita bagi kotak tersebut menjadi 9 bagian yang sama besar (sehingga banyaknya kue dalam tiap bagian sama). Lalu kita hitung berapa isi tujuh bagian kotak itu?
Hasilnya adalah 2x7 = 14 benda


Error creating thumbnail: Unable to save thumbnail to destination


Video berikut menunjukan beberapa contoh perkalian bilangan pecahan dengan bilangan bulat.



{{#ev:YouTube |id= M9OCkcDBPfc |width=640 |height=400 }}


Pecahan x Pecahan

Pada bab ini kita akan belajar tentang perkalian pecahan biasa dengan pecahan biasa, seperti Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{5} \times \frac{3}{7}}

Kita akan gunakan papan pecahan sebagai alat bantu.

Misalkan kita akan menghitung Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} × Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}}

Ini adalah pecahan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}}

Screen Shot 2022-02-23 at 14.45.01.png


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2} \times \frac{1}{2}} artinya kotak isinya Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}}

Jadi disini kotak Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} kita bagi menjadi dua bagian yang sama besar.
Kita cari dipapan pecahan, pecahan mana yang besarnya Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} tetapi terbagi atas dua bagian.
Jawabnya adalah pecahan
Jadi kita lihat bahwa kalau Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} dibagi 2, hasilnya adalah Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4}}

Screen Shot 2022-02-23 at 14.44.46.png

Dengan demikian Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2} \times \frac{1}{2}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4} }


Perhatikan beberapa contoh berikut

a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2} \times \frac{1}{3}}
  • Pertama kita buat dulu pecahan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3} }
  • Kemudian pecahan tersebut dibagi menjadi dua bagian yang sama besar.
  • Salah satu bagian ini nilainya adalah Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2} \times \frac{1}{3}}

Screen Shot 2022-02-23 at 20.11.16.png

  • Kalau kita perhatikan pada gambar diatas Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2} \times \frac{1}{3}} adalah nilai satu bagian dari satu kelompok yang terdiri dari 6 bagian yang sama besar. Ini adalah definisi Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{6} }
Error creating thumbnail: Unable to save thumbnail to destination
  • Sehingga bisa disimpulkan bahwa Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2} \times \frac{1}{3}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{6} }


b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3} \times \frac{1}{2}}
  • Pertama kita buat dulu pecahan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2} }
  • Kemudian pecahan tersebut dibagi menjadi tiga bagian yang sama besar.
  • Salah satu bagian ini nilainya adalah Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3} \times \frac{1}{2}}

Screen Shot 2022-02-23 at 20.48.39.png

  • Kalau kita perhatikan pada gambar diatas Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3} \times \frac{1}{2}} adalah nilai satu bagian dari satu kelompok yang terdiri dari 6 bagian yang sama besar. Ini adalah definisi Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{6} }

Screen Shot 2022-02-23 at 20.44.20.png

  • Sehingga bisa disimpulkan bahwa Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3} \times \frac{1}{2}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{6} }



c)
  • Pertama kita buat dulu pecahan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{3} }
Error creating thumbnail: Unable to save thumbnail to destination
  • Kemudian pecahan tersebut dibagi menjadi dua bagian yang sama besar.
  • Salah satu bagian ini nilainya adalah Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2} \times \frac{2}{3}}

Screen Shot 2022-02-23 at 21.01.41.png

  • Kalau kita perhatikan pada gambar diatas Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2} \times \frac{2}{3}} adalah nilai dua bagian dari satu kelompok yang terdiri dari 6 bagian yang sama besar. Ini adalah definisi Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{6} }
  • Sehingga bisa disimpulkan bahwa Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2} \times \frac{2}{3}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{6} }


Lakukan eksplorasi ini berulang-ulang, sampai siswa melihat pola bahwa pada perkalian pecahan dengan pecahan, maka hasilnya diperoleh dengan mengalikan pembilang dengan pembilang dan penyebut dengan penyebut.


Screen Shot 2022-02-23 at 15.16.30.png

Perhatikan contoh beberapa perkalian pecahan dibawah ini


  • a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{3} \times \frac{3}{5}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2 \times 3}{3 \times 5} } = = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{5} }

Screen Shot 2022-02-23 at 21.28.27.png


  • b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{5}{7} \times \frac{7}{9}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{5 \times 7}{7 \times 9} } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{35}{63} } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{5}{9} }

Screen Shot 2022-02-23 at 21.31.46.png


Cara coret:

Ada kalanya dalam perkalian pecahan kita bisa lakukan cara cepat yaitu dengan membagi pembilang dan penyebut dengan bilangan tertentu sebelum mereka dikalikan.

Perhatikan contoh berikut

a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{3} \times \frac{3}{5}}
  • Langkah pertama adalah mengalikan pembilang dengan pembilang dan penyebut dengan penyebut
= Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2 \times 3}{3 \times 5} }
  • Langkah kedua adalah membagi pembilang dan penyebut dengan 3.
Pembilang 3 ÷ 3 = 1
Penyebut 3 ÷ 3 = 1
  • Langkah ketiga adalah kalikan pembilang dengan pembilang dan penyebut dengan penyebut
Pembilang 2 x 1 = 2
Penyebut 1 x 5 = 5
  • Hasilnya adalah


Screen Shot 2022-02-23 at 21.35.00.png

Kalau sudah mahir kita bisa coret diawal seperti pada gambar ini.

Screen Shot 2022-02-24 at 04.28.19.png

Pembilang 2 x 1 = 2
Penyebut 1 x 5 = 5
Hasilnya Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{5} }


b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{5}{7} \times \frac{7}{9}}
  • Langkah pertama adalah mengalikan pembilang dengan pembilang dan penyebut dengan penyebut
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{5}{7} \times \frac{7}{9}} =
  • Langkah kedua adalah membagi pembilang dan penyebut dengan 7.
Pembilang 7÷7 = 1
Penyebut 7÷7 = 1


  • Langkah ketiga adalah kalikan pembilang dengan pembilang dan penyebut dengan penyebut
Pembilang 5 x 1 = 5
Penyebut 1 x 9 = 9
  • Hasilnya adalah Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{5}{9} }


Error creating thumbnail: Unable to save thumbnail to destination

Kalau sudah mahir kita bisa coret diawal seperti pada gambar ini.

Error creating thumbnail: Unable to save thumbnail to destination
Pembilang 5 x 1 = 5
Penyebut 1 x 9 = 9
Hasilnya


c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{16}{15} \times \frac{9}{4}}

Kita bisa selesaikan soal ini dengan mengalikan pembilang dengan pembilang dan penyebut dengan penyebut. Kemudian kita sederhanakan seperti ditunjukan pada gambar ini.

Error creating thumbnail: Unable to save thumbnail to destination

Atau kita melakukan penyederhanaan diawal pembilang dan penyebut dibagi dengan bilangan yang sama.

16 ÷ 4 = 4 (pembilang) dan 4 ÷ 4 = 1 (penyebut)
15 ÷ 3 = 5 (penyebut) dan 9:3 = 3 (pembilang)

Kemudian mengalikan pembilang dengan pembilang dan penyebut dengan penyebut

Pembilang = 4 x 3 = 12
Penyebut = 5 x 1 = 5
Error creating thumbnail: Unable to save thumbnail to destination


Video berikut ini beberapa contoh perkalian pecahan dengan pecahan


{{#ev:YouTube |id= xDjEDKLGLys |width=640 |height=400 }}

  • Aktivitas 14

Tujuan: siswa mengerjakan secara cepat soal-soal mengenai perkalian pecahan

Mengerjakan Latihan 24-26 dari buku Pecahan (buku 4)



Pecahan Majemuk x Pecahan Majemuk

Pada perkalian pecahan majemuk, kita harus mengubah dulu pecahan majemuk ini menjadi pecahan biasa. Setelah itu kita bisa lakukan perkalian pecahan seperti yang sudah dipelajari sebelumnya.

Perhatikan contoh berikut

a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 \frac{4}{7} \times 3\frac{2}{4}} =

Hasil perhitungan diberikan pada gambar dibawah ini

Error creating thumbnail: Unable to save thumbnail to destination


b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3 \frac{3}{7} \times 2\frac{12}{15}} =

Hasil perhitungan diberikan pada gambar dibawah ini

Screen Shot 2022-02-24 at 05.21.57.png


c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1 \frac{4}{8} \times 3\frac{7}{14}} =

Hasil perhitungan dapat dilihat pada gambar dibawah ini

Screen Shot 2022-02-24 at 05.30.45.png

Pada soal diatas kita bisa juga menyederhanakan pecahan lebih awal lagi

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4}{8} = \frac{1}{2}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{7}{14} = \frac{1}{2}}

Hasilnya adalah

Screen Shot 2022-02-24 at 05.37.51.png


Video berikut ini memberikan beberapa variasi soal perkalian pecahan majemuk


{{#ev:YouTube |id= Z9I-h-4lcRU |width=640 |height=400 }}

  • Aktivitas 15

Tujuan: siswa mengerjakan secara cepat soal-soal mengenai perkalian pecahan majemuk

Mengerjakan Latihan 27 dari buku Pecahan (buku 4)


Perkalian 3 Pecahan

Pada perkalian 3 pecahan kita bisa lakukan dengan sistem coret.

Untuk lebih jelasnya lihat video berikut ini.


{{#ev:YouTube |id= 3v2nL6veuZ0 |width=640 |height=400 }}


  • Aktivitas 16

Tujuan: siswa mengerjakan secara cepat soal-soal mengenai perkalian pecahan majemuk

Mengerjakan Latihan 28 dari buku Pecahan (buku 4)

Pembagian Pecahan

Pembahasan pembagian pecahan akan kita bagi dalam 4 bagian

  • Pembagian bilangan bulat dengan pecahan
  • Pembagian pecahan dengan bilangan bulat
  • Pembagian pecahan dengan pecahan
  • Pembagian pecahan majemuk

Bilangan Pecahan ÷ Bilangan Bulat

Pembagian pecahan menggunakan dasar konsep pembagian yang sudah dipelajari sebelumnya.
Dalam pembagian kita tentu masih ingat bahwa 6 ÷ 2 artinya saya punya 6 benda hendak dimasukan dalam 2 kotak, berapa yang diterima tiap kotak.
Kita sudah tahu bahwa jawabnya adalah 3 benda.
Bagaimana dengan pembagian bilangan pecahan dengan bilangan bulat seperti Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} ÷ 2 ?
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} ÷ 2 artinya kue hendak dimasukan dalam 2 kotak. Berapa isi masing-masing kotak agar pembagian ini adil dan merata.


Screen Shot 2022-02-24 at 20.51.36.png

Yang kita perlu lakukan adalah membagi dua kue Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} itu. Kemudian memasukan tiap bagian ke dalam kotak. Kita lihat tiap kotak akan menerima masing-masing Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4}} kue.

Dengan demikian Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} ÷ 2 = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4}}


Sekarang bagaimana dengan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}}  : 2 = ?

Kita bisa gunakan papan pecahan.

Ini pecahan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}}


Screen Shot 2022-02-24 at 21.08.06.png

Cari di papan pecahan, pecahan yang nilainya Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}} tapi terbagi 2.

Jawabnya adalah pada gambar ini

Screen Shot 2022-02-24 at 21.08.17.png

Disini terlihat bahwa Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3} : 2 = \frac{1}{6} }


Bagaimana dengan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} ÷ 5 = ?

Kita bisa gunakan papan pecahan.

Ini pecahan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}}

Screen Shot 2022-02-24 at 21.13.37.png

Cari di papan pecahan, pecahan yang nilainya Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} tapi terbagi 5.

Jawabnya adalah pada gambar ini

Error creating thumbnail: Unable to save thumbnail to destination

Disini terlihat bahwa


Perhatikan hasil-hasil yang kita peroleh dibawah ini

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} ÷ 6, kita membayangkan 1/2 kue dipotong-potong jadi 6 bagian yang sama hasilnya yaitu Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{12}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}} ÷ 4, kita membayangkan 1/3 kue dipotong-potong jadi 4 bagian yang sama hasilnya yaitu Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{12}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{5}} ÷ 7, kita membayangkan 1/5 kue dipotong-potong menjadi 7 bagian yang sama hasilnya yaitu Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{35}}


Video berikut menunjukan beberapa contoh perkalian bilangan pecahan dengan bilangan bulat.


{{#ev:YouTube |id= DBSXhkjXA7o |width=640 |height=400 }}

Bilangan Bulat ÷ Bilangan Pecahan

Kalimat perkalian 2 x 3 = 6, artinya jika ada 2 kotak masing-masing kotak isi 3 benda maka jumlah seluruh benda dalam kotak-kotak itu adalah 6 benda.
Dari perkalian 2 x 3 = 6, maka arti pembagian 6:2 = 3 adalah kita punya 6 benda hendak dibagikan dalam 2 kotak, maka isi tiap kotak adalah 3 benda.
Dari perkalian 2 x 3 = 6, maka arti pembagian 6:3 = 2 adalah kita punya 6 benda hendak dimasukan dalam kotak, setiap kotak hanya bisa menampung 3 benda, maka jumlah kotak yang bisa menerima 6 benda ini ada 2 kotak.

Disini kita lihat ada 2 arti pembagian. Pembagian pertama yang sering kita pakai adalah menanyakan isi kotak. Sedangkan pembagian kedua adalah menanyakan banyak kotak.

Untuk perkalian bilangan bulat x bilangan pecahan, kita akan gunakan arti pembagian kedua.

Contoh: 1÷ Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} = ? Untuk melihat konkretnya ada baiknya kita ambil wadah air 1 liter dan wadah air 1/2 liter. Air dituang dari wadah 1 liter ke wadah 1/2 liter... kita lihat bahwa kita membutuhkan 2 wadah yang 1/2 liter.

Jadi 1÷ Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} = 2


Bagaimana dengan pembagian 1 ÷ Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}}  ?
Saya punya kue hendak dimasukan dalam kotak dengan kapasitas atau ukuran Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} , berapa banyak potong kue dapat dimasukan dalam kotak tersebut?

Screen Shot 2022-02-24 at 11.44.58.png

Gambar dibawah ini menggambarkan situasi ketika 1 potong kue sudah masuk kotak pertama.

Screen Shot 2022-02-24 at 11.45.20.png

Ini gambar situasi ketika 2 potong kue sudah masuk kotak kedua.


Screen Shot 2022-02-24 at 11.45.59.png

Jadi jumlah kotak yang dibutuhkan adalah 2 kotak.


Sekarang kita akan hitung 1 ÷ Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4}}

Screen Shot 2022-02-24 at 12.16.41.png

Pada gambar diatas kita punya 1 kue, hendak kita masukan dalam beberapa kotak dengan kapasitas atau ukuran .
Kue kita bagi menjadi potongan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4}} agar bisa masuk kotak.
Kita lihat bahwa banyak kotak adalah 4 buah.

Jadi

1 ÷ Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4}} = 4

Bisa juga kita gunakan wadah 1 liter dan wadah 1/4 liter. Air dalam wadah 1 liter kita tuangkan dalam wadah 1/4 liter dan kita bisa lihat bahwa untuk ini dibutuhkan 4 wadah. Jadi

1 ÷ Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4}} = 4

Dengan cara yang sama kita bisa dapatkan bahwa

1 ÷ Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}} = 3
1 ÷ Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{6}} = 6
1 ÷ Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{10}} = 10

Pola apa yang Anda lihat?

Bagaimana kalau 2 ÷ Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} = ?
Karena
1 ÷ Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} = 2
maka
2 ÷ = 2 x 2 = 4
Error creating thumbnail: Unable to save thumbnail to destination


Dengan cara yang sama kita bisa peroleh

2 ÷ = 2 x 3 = 6
2 ÷ Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4}} = 2 x 4 = 8
2 ÷ = 2 x 6 = 12
2 ÷ Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{10}} = 2 x 10 = 20

Dan dengan pola yang sama kita bisa peroleh

5 ÷ Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}} = 5 x 3 = 15
9 ÷ Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4}} = 9 x 4 = 36
12 ÷ Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{6}} = 12 x 6 = 72
25 ÷ = 25 x 10 = 250


Jadi resep untuk menghitung perbagian bilangan bulat dengan bilangan pecahan seperti 25 ÷ Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{10}} adalah dengan membayangkan 1 kali÷ Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{10}} . Kemudian hasilnya ini dikalikan 25. Hasilnya adalah 250.

Video berikut menunjukan berbagai contoh pembagian bilangan bulat dengan pecahan.


{{#ev:YouTube |id= RbJ0IYVfnss |width=640 |height=400 }}


Pecahan ÷ Pecahan

Pada bagian ini kita akan belajar tentang pembagian pecahan biasa dengan pecahan biasa, seperti Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{5} \div \frac{3}{7}}


Misalkan kita akan menghitung Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} ÷ Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4}}

artinya ada kue berukuran Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} hendak dimasukan dalam kotak berukuran Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4}} , ada berapa banyak kotak dibutuhkan?

Screen Shot 2022-02-25 at 05.07.18.png


Kue berukuran Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} tidak bisa masuk kedalam kotak berukuran Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4}} . Karena itu maka kue Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} harus dipotong menjadi beberapa potongan kue berukuran Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4}} .

Error creating thumbnail: Unable to save thumbnail to destination

Kita lihat pada gambar bahwa kue Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} bisa dipotong menjadi 2 kue berukuran Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4}} .

Kue yang sudah dipotong ini dimasukan satu persatu ke dalam kotak Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4}} .

Banyak kotak yang dibutuhkan adalah 2 buah.

Dengan demikian Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2} \div \frac{1}{4}} = 2

Kita bisa juga lakukan ini dengan wadah 1/2 liter air dan wadah 1/4 liter air. Kita masukan air dari wadah 1/2 liter ke wadah 1/4 liter. Kita lihat bahwa kita butuh 2 wadah. Jadi

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2} \div \frac{1}{4}} = 2


Sekarang kita gunakan papan pecahan untuk menjelaskan soal diatas.

Ini adalah pecahan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}}

Screen Shot 2022-02-25 at 03.30.29.png

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2} \div \frac{1}{4}} artinya ada batang Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} hendak dimasukan dalam kotak Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4}} , ada berapa buah kotak dibutuhkan.

Pecahan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} terlalu besar untuk masuk kotak Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4}} . Karena itu maka pecahan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} itu harus dipotong menjadi beberapa potongan pecahan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4}} .

Screen Shot 2022-02-25 at 03.30.54.png

Kita lihat pada gambar bahwa pecahan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} bisa dipotong menjadi 2 buah pecahan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4}} .

Potongan pecahan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4}} ini \kemudian dimasukan satu persatu ke dalam kotak Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4}} .

Banyak kotak yang dibutuhkan adalah 2 buah.

Dengan demikian Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2} \div \frac{1}{4}} = 2


Perhatikan beberapa contoh berikut

a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2} \div \frac{1}{8}}
  • Arti Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2} \div \frac{1}{8}} adalah kita mempunyai pecahan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2} }

hendak dimasukan dalam kotak berukuran Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{8} } , tentunya pecahan itu harus dipotong-potong. Ada berapa kotak dibutuhkan?

  • Cari di papan pecahan, pecahan

Screen Shot 2022-02-25 at 03.30.29.png

  • Tempatkan pecahan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2} } ini ke dalam deretan pecahan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{8}} . Kita lihat

ada 4 pecahan Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{8}} yang nilainya Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2} } . Dengan kata lain ada 4 kotak Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{8}} dibutuhkan untuk menampung Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2} } .

Error creating thumbnail: Unable to save thumbnail to destination