Difference between revisions of "Reversible logic"
Jump to navigation
Jump to search
Line 3: | Line 3: | ||
=References= | =References= | ||
* {{cite journal |last1=Denning |first1=Peter |last2=Lewis |first2=Ted |title=Computers That Can Run Backwards |journal=American Scientist |date=2017 |volume=105 |issue=5 |pages=270 |doi=10.1511/2017.105.5.270 }} | |||
* {{cite journal |last1=Lange |first1=Klaus-Jörn |last2=McKenzie |first2=Pierre |last3=Tapp |first3=Alain |title=Reversible Space Equals Deterministic Space |journal=Journal of Computer and System Sciences |date=April 2000 |volume=60 |issue=2 |pages=354–367 |doi=10.1006/jcss.1999.1672 |doi-access=free }} | |||
* Perumalla K. S. (2014), ''Introduction to Reversible Computing'', [[CRC Press]]. | |||
* {{cite book |doi=10.1145/1062261.1062335 |chapter=Time, space, and energy in reversible computing |title=Proceedings of the 2nd conference on Computing frontiers - CF '05 |year=2005 |last1=Vitányi |first1=Paul |pages=435 |isbn=1595930191 }} | |||
[[Category:Logic]] | [[Category:Logic]] |
Revision as of 03:33, 17 July 2021
Reversible logic is a kind of Logic that keeps information symmetry before and after a logic inference operation.
References
- Denning, Peter; Lewis, Ted (2017). "Computers That Can Run Backwards". American Scientist. 105 (5): 270. doi:10.1511/2017.105.5.270.
- Lange, Klaus-Jörn; McKenzie, Pierre; Tapp, Alain (April 2000). "Reversible Space Equals Deterministic Space". Journal of Computer and System Sciences. 60 (2): 354–367. doi:10.1006/jcss.1999.1672. Unknown parameter
|doi-access=
ignored (help) - Perumalla K. S. (2014), Introduction to Reversible Computing, CRC Press.
- Vitányi, Paul (2005). "Time, space, and energy in reversible computing". Proceedings of the 2nd conference on Computing frontiers - CF '05. p. 435. ISBN 1595930191. doi:10.1145/1062261.1062335.