Difference between revisions of "Calculus"

From PKC
Jump to navigation Jump to search
Line 3: Line 3:
==Differentiation==
==Differentiation==
====[[Calculus:Limits|Limits]]====
====[[Calculus:Limits|Limits]]====
====[[Calculus:Power Rule====
====[[Calculus:Power Rule|Power Rule]]====
<math>(x^n)' = n*x^{n-1}</math>
<math>(x^n)' = n*x^{n-1}</math>


====Derivative of Polynomial Functions====
====[[Calculus:Derivative of Polynomial Functions|Derivative of Polynomial Functions]]====
#The sum Rule <math>(f+g)'=f'+g'</math>
#The sum Rule <math>(f+g)'=f'+g'</math>
#The Difference Rule <math>(f-g)'=f'-g'</math>
#The Difference Rule <math>(f-g)'=f'-g'</math>
Line 12: Line 12:
#The Quotient Rule <math>({f \over g})' = {(gf'-fg') \over g^2} </math>
#The Quotient Rule <math>({f \over g})' = {(gf'-fg') \over g^2} </math>


====Derivative of Trigonometric Functions====
====[[Calculus:Derivative of Trigonometric Functions|Derivative of Trigonometric Functions]]====
#<math>(sin x)'= cos(x)</math>
#<math>(sin x)'= cos(x)</math>
#<math>(cos x)'= -sin(x)</math>
#<math>(cos x)'= -sin(x)</math>
Line 19: Line 19:
#<math>(csc x)'= -csc(x) cot(x)</math>
#<math>(csc x)'= -csc(x) cot(x)</math>
#<math>(sec x)'= sec(x) tan(x)</math>
#<math>(sec x)'= sec(x) tan(x)</math>
====Chain Rule====  
====[[Calculus:Chain Rule|Chain Rule]]====  
<math>[f(g(x))]'=f'(g(x))*g'(x)</math>
<math>[f(g(x))]'=f'(g(x))*g'(x)</math>


==Integration==
==Integration==

Revision as of 11:40, 24 July 2021

Calculus

This is a course that Henry and Ben are studying during 2021.

Differentiation

Limits

Power Rule

Derivative of Polynomial Functions

  1. The sum Rule
  2. The Difference Rule
  3. The Product Rule
  4. The Quotient Rule

Derivative of Trigonometric Functions

Chain Rule

Integration