Difference between revisions of "Calculus"
Jump to navigation
Jump to search
Line 7: | Line 7: | ||
====[[Calculus:Derivative of Polynomial Functions|Derivative of Polynomial Functions]]==== | ====[[Calculus:Derivative of Polynomial Functions|Derivative of Polynomial Functions]]==== | ||
=======[[use Notation::Newton]] Derivative of Polynomial Functions======= | |||
======[[use Notation::Newton]] Derivative of Polynomial Functions====== | |||
#The sum rule <math>(f+g)'=f'+g'</math> | #The sum rule <math>(f+g)'=f'+g'</math> | ||
#The Difference Rule <math>(f-g)'=f'-g'</math> | #The Difference Rule <math>(f-g)'=f'-g'</math> | ||
#The Product Rule <math>(f*g)'=f*g'+ g*f'</math> | #The Product Rule <math>(f*g)'=f*g'+ g*f'</math> | ||
#The Quotient Rule <math>({f \over g})' = {(gf'-fg') \over g^2} </math> | #The Quotient Rule <math>({f \over g})' = {(gf'-fg') \over g^2} </math> | ||
======[[use Notation::Leibniz]] Derivative of Polynomial Functions====== | =======[[use Notation::Leibniz]] Derivative of Polynomial Functions======= | ||
#The sum rule <math>{d (f+g) \over d x} ={d f \over d x} + {d g \over d x}</math> | #The sum rule <math>{d (f+g) \over d x} ={d f \over d x} + {d g \over d x}</math> | ||
#The Difference Rule <math>{d (f-g) \over d x}={d f \over d x} - {d g \over d x}</math> | #The Difference Rule <math>{d (f-g) \over d x}={d f \over d x} - {d g \over d x}</math> | ||
Line 36: | Line 24: | ||
#<math>(csc x)'= -csc(x) cot(x)</math> | #<math>(csc x)'= -csc(x) cot(x)</math> | ||
#<math>(sec x)'= sec(x) tan(x)</math> | #<math>(sec x)'= sec(x) tan(x)</math> | ||
====[[Calculus:Chain Rule|Chain Rule]]==== | ====[[Calculus:Chain Rule|Chain Rule]]==== | ||
<math>[f(g(x))]'=f'(g(x))*g'(x)</math> | #[[use Notation::Newton]]Chain rule <math>[f(g(x))]'=f'(g(x))*g'(x)</math> | ||
<math>\frac{d f(g(x))}{d x} = {{d f(g)} \over d g} {d g \over d x}</math> | #[[use Notation::Leibniz]]Chain rule <math>\frac{d f(g(x))}{d x} = {{d f(g)} \over d g} {d g \over d x}</math> | ||
==Integration== | ==Integration== |
Revision as of 13:23, 25 July 2021
Calculus
This is a course that Henry and Ben are studying during 2021.
Differentiation
Limits
Power Rule
Derivative of Polynomial Functions
=Newton Derivative of Polynomial Functions=
- The sum rule
- The Difference Rule
- The Product Rule
- The Quotient Rule
=Leibniz Derivative of Polynomial Functions=
- The sum rule
- The Difference Rule
- The Product Rule
- The Quotient Rule
Derivative of Trigonometric Functions
Chain Rule
- NewtonChain rule
- LeibnizChain rule