Difference between revisions of "Derivatives of Logarithmic and Exponential Functions"

From PKC
Jump to navigation Jump to search
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
==log==
#Natural log of <math>x</math> : <math>(ln(x))'= {1 \over x} * (x)' </math>
#Natural log of <math>x</math> : <math>(ln(x))'= {1 \over x} * (x)' </math>
#log of <math>x</math> : <math>(log_a x^z)' = ({ln x^z \over ln  a})'={1 \over ln_a}(ln x^z)'= {z x^{z-1} \over ln  {a*x^z}} </math>
#log of <math>x</math> : <math>(log_a x^z)' = ({ln x^z \over ln  a})'={1 \over ln_a}(ln x^z)'= {z x^{z-1} \over ln  {a*x^z}} </math>
 
<noinclude>
==Natural log==
==Natural log==
====equations for quiz====
====equations it may be help full====
No meter what you can use this equation to get the answer.
No meter what you can use this equation to get the answer.
<math>(ln(x^n))'= {n \over x} </math>
<math>(ln(x^n))'= {n \over x} </math>


==log(Not Natural log)==
==log(Not Natural log)==
<math>(log_a x^z)' ={1 \over ln_a}(ln x^z)'= {z\over ln  {a*x}} </math>
====equations it may be help full====
 
<math>(log_a x^z)' = {z\over ln  {a*x}} </math>
</noinclude>

Latest revision as of 14:27, 15 September 2021

  1. Natural log of  :
  2. log of  :

Natural log

equations it may be help full

No meter what you can use this equation to get the answer.

log(Not Natural log)

equations it may be help full