Difference between revisions of "Derivatives of Logarithmic and Exponential Functions"
Jump to navigation
Jump to search
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
#Natural log of <math>x</math> : <math>(ln(x))'= {1 \over x} * (x)' </math> | #Natural log of <math>x</math> : <math>(ln(x))'= {1 \over x} * (x)' </math> | ||
#log of <math>x</math> : <math>(log_a x^z)' = ({ln x^z \over ln a})'={1 \over ln_a}(ln x^z)'= {z x^{z-1} \over ln {a*x^z}} </math> | #log of <math>x</math> : <math>(log_a x^z)' = ({ln x^z \over ln a})'={1 \over ln_a}(ln x^z)'= {z x^{z-1} \over ln {a*x^z}} </math> | ||
<noinclude> | |||
==Natural log== | ==Natural log== | ||
====equations | ====equations it may be help full==== | ||
No meter what you can use this equation to get the answer. | No meter what you can use this equation to get the answer. | ||
<math>(ln(x^n))'= {n \over x} </math> | <math>(ln(x^n))'= {n \over x} </math> | ||
==log(Not Natural log)== | ==log(Not Natural log)== | ||
<math>(log_a | ====equations it may be help full==== | ||
<math>(log_a x^z)' = {z\over ln {a*x}} </math> | |||
</noinclude> |
Latest revision as of 14:27, 15 September 2021
- Natural log of :
- log of :
Natural log
equations it may be help full
No meter what you can use this equation to get the answer.
log(Not Natural log)
equations it may be help full