Difference between revisions of "Integral"

From PKC
Jump to navigation Jump to search
 
(12 intermediate revisions by the same user not shown)
Line 1: Line 1:
<noinclude>
==Vocabulary of the equation==
==Vocabulary of the equation==
#c = constant
#c = constant
Line 7: Line 8:
But when you are looking at the equation you must need to know F(x)= f'(x).  
But when you are looking at the equation you must need to know F(x)= f'(x).  
#<math>\int_{a}^{b} f(x) \,dx = F(b) - F(a)</math>
#<math>\int_{a}^{b} f(x) \,dx = F(b) - F(a)</math>
#<math>\int_{a}^{b} {x^{n}}\,dx ={ b^{n+1} \over n+1 } - { a^{n+1} \over n+1 }</math>
#<math>\int_{a}^{b} c{x^{n}}\,dx =c{ b^{n+1} \over n+1 } - c{ a^{n+1} \over n+1 }</math>
 
==Indefinite Integral==
==Indefinite Integral==
Some equations you can remember  
Some equations you can remember  
But same you must need to know F(x)= f'(x).  
But same you must need to know F(x)= f'(x).  
</noinclude>


#Indefinite Integral <math>\int f(x) \,dx = F(x)+c,</math>
#Indefinite Integral <math>\int f(x) \,dx = F(x)+c,</math>
Line 17: Line 20:
#Indefinite Integral <math>\int x^n \,dx = { x^{n+1} \over n+1 }+c</math>
#Indefinite Integral <math>\int x^n \,dx = { x^{n+1} \over n+1 }+c</math>
#Natural log rule <math>\int {n \over x} \,dx = { ln |x^n|}</math>
#Natural log rule <math>\int {n \over x} \,dx = { ln |x^n|}</math>
#<math>\int a^x dx = {a^x \over \in (a)}</math>
#<math>\int a^x dx = {a^x \over ln (a)}</math>
#constant(constant can be pull out in the Indefinite Integral)  <math>\int c* f(x)dx = c \int f(x)dx</math>
#constant(constant can be pull out in the Indefinite Integral)  <math>\int c* f(x)dx = c \int f(x)dx</math>
<noinclude>


==Examples==
==Examples==
Line 29: Line 34:
<math>\int_{2}^{3} 8x^3 + 3x^2 + 6x \,dx </math>
<math>\int_{2}^{3} 8x^3 + 3x^2 + 6x \,dx </math>


Remember
using this equation
<math>\int_{a}^{b} c{x^{n}}\,dx =c{ b^{n+1} \over n+1 } - c{ a^{n+1} \over n+1 }</math>
 
<math>\int_{2}^{3} 8x^3 + 3x^2 + 6x \,dx = (8({3^{3+1} \over 3+1}) + 3({ 3^{2+1} \over 2+1}) + 6({ 2^{1+1} \over 1+1 }))- (8({2^{3+1} \over 3+1}) + 3({ 2^{2+1} \over 2+1}) + 6({ 2^{1+1} \over 1+1 }))</math>
 
<math>\int_{2}^{3} 8x^3 + 3x^2 + 6x \,dx = (8({3^{4} \over 4}) + 3({ 3^{3} \over 3}) + 6({ 3^{2} \over 2 }))- (8({2^{4} \over 4}) + 3({ 2^{3} \over 3}) + 6({ 2^{2} \over 2 }))</math>
 
<math>\int_{2}^{3} 8x^3 + 3x^2 + 6x \,dx = (8({81 \over 4}) + 3({ 27 \over 3}) + 6({ 9 \over 2 }))- (8({16 \over 4}) + 3({ 8 \over 3}) + 6({ 4 \over 2 }))</math>
 
<math>\int_{2}^{3} 8x^3 + 3x^2 + 6x \,dx = (2(81) + ( 27 ) + 3( 9 ))- (2(16) + ( 8 ) + 3( 4 ))</math>
 
<math>\int_{2}^{3} 8x^3 + 3x^2 + 6x \,dx = (162 + 27 + 27 )- (32 + 8  + 12 ))</math>
 
<math>\int_{2}^{3} 8x^3 + 3x^2 + 6x \,dx = (216)- (52)</math>
 
<math>\int_{2}^{3} 8x^3 + 3x^2 + 6x \,dx = 164</math>
</noinclude>

Latest revision as of 13:51, 16 September 2021

Vocabulary of the equation

  1. c = constant
  2. n = constant
  3. = Integrals from a to b

Definite Integral

Some equations you can remember But when you are looking at the equation you must need to know F(x)= f'(x).

Indefinite Integral

Some equations you can remember But same you must need to know F(x)= f'(x).


  1. Indefinite Integral
  2. sum rule of Indefinite Integral
  3. The Difference Rule
  4. Indefinite Integral
  5. Natural log rule
  6. constant(constant can be pull out in the Indefinite Integral)


Examples

Examples for Definite Integral

This is the rule that we will going to used for calculating areas

Know Here are some example for you to do

Examples for Definite Integral 1

using this equation