Difference between revisions of "Solve Differential Equation by means of Separating Variables"

From PKC
Jump to navigation Jump to search
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
==Examples==
==Examples==
Ex1 <math> {dx \over dy} = {x^2 \over y^2}</math>
Ex1 <math> {dy \over dx} = {x^2 \over y^2}</math>


<math> y^2 * dy = x^2 * dx</math>
<math> y^2 * dy = x^2 * dx</math>


<math>{\int y^2 * dy }={ \int x^2 * dx}</math>
<math>{\int y^2 * dy } = { \int x^2 * dx}</math>
 
<math>{\int y^2 * dy } = { y^3 \over 3}</math>
 
<math>{ \int x^2 * dx} = { x^3 \over 3}</math>
 
But one side of the equation needs to add a constant c.
 
<math>{ y^3 \over 3} = { x^3 \over 3} + c</math>
 
<math> y^3  = x^3  + 3c</math>
 
constant times 3 will still be constant so 3c-> c.
 
<math> \sqrt[3] {y^3}.  = \sqrt[3] {x^3  + c}</math>
 
 
 
Ex2 y' = xy
<math> {dy \over dx} = xy</math>
 
<math> dy = xy * dx</math>
 
<math> {dy \over y} = x * dx</math>
 
<math>\int {1 \over y} dy = \int x * dx</math>
 
<math>\int {1 \over y} dy = ln|y|</math>
 
<math> \int x * dx = {x^2 \over 2} + c</math>
==reference==
https://www.youtube.com/watch?v=C7nuJcJriWM&list=PLEjLk3Wl8akWPgisw-u9jrmdN67dgPibe&index=33

Latest revision as of 14:09, 28 September 2021

Examples

Ex1

But one side of the equation needs to add a constant c.

constant times 3 will still be constant so 3c-> c.


Ex2 y' = xy

reference

https://www.youtube.com/watch?v=C7nuJcJriWM&list=PLEjLk3Wl8akWPgisw-u9jrmdN67dgPibe&index=33