Difference between revisions of "What is Log"

From PKC
Jump to navigation Jump to search
 
(9 intermediate revisions by the same user not shown)
Line 1: Line 1:


#First law If <math>log_a x = n </math> than <math>a^n = x </math>
#First law If <math>log_a x = n </math> than <math>a^n = x </math>
#Second law <math>log_A + log_B = log_(AB)</math>
#Second law <math>log_n A + log_n B = log_(AB)</math>
#Thirde law <math>log_A - log_B = log_({A \over B})</math>
#Thirde law <math>log_A - log_B = log_({A \over B})</math>
#Fourth law If "<math>{log_ x}^{log_ x} = {log_ x}^2 = n </math>" than "<math>{log_ x} = \sqrt[2]{n} </math>"
#law If "<math>{log_ x}^{log_ x} = {log_ x}^2 = n </math>" than "<math>{log_ x} = \sqrt[2]{n} </math>"
#Fieth law if  <math>log_ (x^n) = {log_ x}^n =  2{log_ x}</math>
#law if  <math>log_ (x^n) = {log_ x}^n =  n*{log_ x}</math>
#law  "<math>log_n (x) = {log_n (a)}</math>" than "x = a"
 
 


<noinclude>
<noinclude>
Line 30: Line 33:


====example 3====
====example 3====
ex3: <math>log_a 25 =2  </math> find x.
ex3: <math>log_a 25 =2  </math> find a.


<math>log_a x = n </math>
<math>log_a x = n </math>
Line 39: Line 42:


a = 5
a = 5
====example 4====
ex4: <math>log_a 25 =2  </math> find a.
<math>log_a x = n </math>
<math>a^n = x </math>
<math>a^2 = 25 </math>
a = 5
====example 5====
ex5: <math>log_4 x + log_4 (2x + 5)=2  </math> find x.
#Second law <math>log_A + log_B = log_(AB)</math>.
<math>log_4 x + log_4 (2x + 5)= log_4 (2x^2 + 4x) </math>
<math>log_4 (2x^2 + 4x) = 2 </math>
<math>4^2 = (2x^2 + 4x) </math>
<math>2x^2 + 4x - 16 = 0</math>
x= 2 and -4
====example 6====
ex6: <math>log_4 x + log_4 (x + 4) - log_4 (x^4 + 8x^3 + 16x^2)  =2  </math> simplify
<math>log_4 x + log_4 (x + 4) - log_4 (x^4 + 8x^3 + 16x^2) = 2</math>
<math>log_4 x + log_4 (x + 4) = 2 + log_4 (x^4 + 8x^3 + 16x^2)</math>
#Second law <math>log_n A + log_n B = log_(AB)</math>
<math> log_4 x + log_4 (x + 4) = log_4 (x^2 + 4x)</math>
<math> log_4 (x^2 + 4x) - log_4 (x^4 + 8x^3 + 16x^2) = 2 </math>
#Thirde law <math>log_A - log_B = log_({A \over B})</math>
<math>(x^2 + 4x) = 16(x^4 + 8x^3 + 16x^2)  </math>
<math> 16 (x^2 + 4)=0 </math>
</noinclude>
</noinclude>

Latest revision as of 14:44, 6 October 2021

  1. First law If than
  2. Second law
  3. Thirde law
  4. law If "" than ""
  5. law if
  6. law "" than "x = a"



examples

example 1

ex1: find n.

n=1

example 2

ex2: find x.

x = 16

example 3

ex3: find a.

a = 5

example 4

ex4: find a.

a = 5


example 5

ex5: find x.

  1. Second law .

x= 2 and -4

example 6

ex6: simplify

  1. Second law

  1. Thirde law