Difference between revisions of "What is Log"

From PKC
Jump to navigation Jump to search
 
(5 intermediate revisions by the same user not shown)
Line 71: Line 71:


====example 6====
====example 6====
ex6: <math>log_4 x + log_4 (x + 4) - log_4 (x^4 + 8x^3 + 16x^2)  =2  </math> find x.
ex6: <math>log_4 x + log_4 (x + 4) - log_4 (x^4 + 8x^3 + 16x^2)  =2  </math> simplify


#Second law <math>log_A + log_B = log_(AB)</math>.
<math>log_4 x + log_4 (x + 4) - log_4 (x^4 + 8x^3 + 16x^2) = 2</math>


<math>log_4 x + log_4 (x + 4) - log_4 (x^2 + 4x) = log_4 (x^2 + 4x) - log_4 (x^4 + 8x^3 + 16x^2)   </math>
<math>log_4 x + log_4 (x + 4) = 2 + log_4 (x^4 + 8x^3 + 16x^2)</math>
 
#Second law <math>log_n A + log_n B = log_(AB)</math>
 
<math> log_4 x + log_4 (x + 4) = log_4 (x^2 + 4x)</math>
 
<math> log_4 (x^2 + 4x) - log_4 (x^4 + 8x^3 + 16x^2) = 2 </math>


#Thirde law <math>log_A - log_B = log_({A \over B})</math>
#Thirde law <math>log_A - log_B = log_({A \over B})</math>


<math> log_4 (x^2 + 4x) - log_4 (x^4 + 8x^3 + 16x^2) = { log_4 (x^2 + 4x) \over log_4 (x^4 + 8x^3 + 16x^2) }  </math>
<math>(x^2 + 4x) = 16(x^4 + 8x^3 + 16x^2) </math>
 
<math> log_4 (x^4 + 8x^3 + 16x^2) = log_4 {(x^2 + 4x)}^2 </math>


<math> 16 (x^2 + 4)=0 </math>






x= 2 and -4


</noinclude>
</noinclude>

Latest revision as of 14:44, 6 October 2021

  1. First law If than
  2. Second law
  3. Thirde law
  4. law If "" than ""
  5. law if
  6. law "" than "x = a"



examples

example 1

ex1: find n.

n=1

example 2

ex2: find x.

x = 16

example 3

ex3: find a.

a = 5

example 4

ex4: find a.

a = 5


example 5

ex5: find x.

  1. Second law .

x= 2 and -4

example 6

ex6: simplify

  1. Second law

  1. Thirde law