|
|
(2 intermediate revisions by the same user not shown) |
Line 85: |
Line 85: |
| #Thirde law <math>log_A - log_B = log_({A \over B})</math> | | #Thirde law <math>log_A - log_B = log_({A \over B})</math> |
|
| |
|
| <math> log_4 (x^2 + 4x) - log_4 (x^4 + 8x^3 + 16x^2) = log_4 ({ x^2 + 4x \over x^4 + 8x^3 + 16x^2}) = 2</math> | | <math>(x^2 + 4x) = 16(x^4 + 8x^3 + 16x^2) </math> |
| | |
| | <math> 16 (x^2 + 4)=0 </math> |
| | |
| | |
| | |
|
| |
|
| </noinclude> | | </noinclude> |
Latest revision as of 14:44, 6 October 2021
- First law If than
- Second law
- Thirde law
- law If "" than ""
- law if
- law "" than "x = a"
examples
example 1
ex1: find n.
n=1
example 2
ex2: find x.
x = 16
example 3
ex3: find a.
a = 5
example 4
ex4: find a.
a = 5
example 5
ex5: find x.
- Second law .
x= 2 and -4
example 6
ex6: simplify
- Second law
- Thirde law