Difference between revisions of "Categorical quantum mechanics"
Jump to navigation
Jump to search
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{{WikiEntry|key=Categorical quantum mechanics|qCode=5051814}} is a | {{WikiEntry|key=Categorical quantum mechanics|qCode=5051814}}, often abbreviated as [[CQM]], is a formalism to represent [[quantum mechanics]] using [[Category Theory]], or pictorial diagrams as [[Bob Coecke]] formulated it. This idea can also be related to [[Feynman Diagram]]. Due to its close relation to [[Linear Algebra]], it would be useful to relate this theoretical framework with [[Semi-Tensor Product]]<ref>{{:Book/Analysis and Control of Boolean Networks A Semi-tensor Product Approach}}</ref> invented by [[Daizhan Cheng]]. | ||
<noinclude> | <noinclude> | ||
Line 7: | Line 7: | ||
[[Category:Category Theory]] | [[Category:Category Theory]] | ||
[[Category:Quantum Mechanics]] | [[Category:Quantum Mechanics]] | ||
[[Category:STP]] | |||
</noinclude> | </noinclude> |
Latest revision as of 03:30, 19 March 2022
Categorical quantum mechanics(Q5051814), often abbreviated as CQM, is a formalism to represent quantum mechanics using Category Theory, or pictorial diagrams as Bob Coecke formulated it. This idea can also be related to Feynman Diagram. Due to its close relation to Linear Algebra, it would be useful to relate this theoretical framework with Semi-Tensor Product[1] invented by Daizhan Cheng.
References
- ↑ Cheng, Daizhan; Qi, Hongsheng; Li, Zhiqiang (2011). Analysis and Control of Boolean Networks:A Semi-tensor Product Approach. local page: Springer-Verlag. ISBN 978-0-85729-097-7.