Difference between revisions of "Calculus:Power Rule"
Jump to navigation
Jump to search
(29 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<noinclude> | |||
===[[Calculus:Power Rule|Power Rule]]=== | ===[[Calculus:Power Rule|Power Rule]]=== | ||
</noinclude> | |||
<math>( c x^n)' =c* n*x^{n-1}</math> | |||
<noinclude> | |||
====Hint==== | |||
n can be any number that is a kind of constant | |||
<math>1 \over 2</math> is constant. | |||
also when you have square root | |||
<math> \sqrt x</math> | |||
you can look it as | |||
<math> x^{1 \over 2}</math> | |||
==Examples== | ==Examples== | ||
====Example 1==== | |||
EX1:<math>f'(x^6)</math> | EX1:<math>f'(x^6)</math> | ||
Using the Power rule | Using the Power rule | ||
<math>f'(x^n) = n*x^{n-1}</math> | <math>f'(x^n) = n*x^{n-1}</math> | ||
Line 10: | Line 27: | ||
<math>f'(x^6) = 6x^5</math> | <math>f'(x^6) = 6x^5</math> | ||
====Example 2==== | |||
EX2:<math>f'(x^7)</math> | |||
Using the Power rule | |||
<math>f'(x^n) = n*x^{n-1}</math> | |||
<math>f'(x^7) = 7*x^{7-1}</math> | |||
<math>f'(x^7) = 7x^6</math> | |||
====Example 3==== | |||
EX3:<math>f'(x^8)</math> | |||
Using the Power rule | |||
<math>f'(x^n) = n*x^{n-1}</math> | |||
<math>f'(x^7) = 8*x^{8-1}</math> | |||
<math>f'(x^7) = 8x^7</math> | |||
====Example 4==== | |||
EX4:<math>f'({x^7 \over 7} )</math> | |||
Using the Power rule | |||
<math>( c x^n)' =c* n*x^{n-1}</math> | |||
c = <math>{1 \over 7} </math> | |||
n = 7 | |||
<math>f'({x^7 \over 7}) ={1 \over 7} 7*x^{7-1}</math> | |||
<math>f'({x^7 \over 7}) = x^{6}</math> | |||
====Example 5==== | |||
EX5:<math>f'({ \sqrt[4] x} )</math> | |||
first turn it in to exponent | |||
<math>f'({ \sqrt[4] x} )=f'({x^{1 \over 4}} )</math> | |||
use the power rule | |||
<math>f'({ \sqrt[4] x} )=({x^{{1 \over 4}-{1}}} )</math> | |||
<math>f'({ \sqrt[4] x} )=({x^{-3 \over 4}} )</math> | |||
====Example 6==== | |||
EX6:<math>f'({ \sqrt[4] x} )</math> | |||
first turn it in to exponent | |||
<math>f'({ \sqrt[4] x^3} )=f'({x^{3 \over 4}} )</math> | |||
use the power rule | |||
<math>f'({ \sqrt[4] x^3} ) =({x^{{3 \over 4}-{1}}} )</math> | |||
<math>ff'({ \sqrt[4] x^3} ) =({x^{-1 \over 4}} )</math> | |||
</noinclude> |
Latest revision as of 12:41, 29 September 2021
Power Rule
Hint
n can be any number that is a kind of constant is constant.
also when you have square root
you can look it as
Examples
Example 1
EX1:
Using the Power rule
Example 2
EX2:
Using the Power rule
Example 3
EX3:
Using the Power rule
Example 4
EX4:
Using the Power rule
c =
n = 7
Example 5
EX5:
first turn it in to exponent
use the power rule
Example 6
EX6:
first turn it in to exponent
use the power rule