|
|
Line 55: |
Line 55: |
| <math> f'(x) = {{(4x^5 - x^3 + 5x)}{(16x^3 - 2x^1 + 10)}-(4x^4 - x^2 + 10x){(4x^5 - x^3 + 5x)'} \over {(16x^8-8x^6+80x^5+x^4-20x^3+100x^2)}} </math> | | <math> f'(x) = {{(4x^5 - x^3 + 5x)}{(16x^3 - 2x^1 + 10)}-(4x^4 - x^2 + 10x){(4x^5 - x^3 + 5x)'} \over {(16x^8-8x^6+80x^5+x^4-20x^3+100x^2)}} </math> |
|
| |
|
| | <math> f'(x) = {{(4x^5 - x^3 + 5x)}{(16x^3 - 2x^1 + 10)}-(4x^4 - x^2 + 10x){(20x^4 - 3x^2 + 5)} \over {(16x^8-8x^6+80x^5+x^4-20x^3+100x^2)}} </math> |
| </noinclude> | | </noinclude> |
Revision as of 13:57, 24 August 2021
=Newton Derivative of Polynomial Functions=
- The sum rule
- The Difference Rule
- The Product Rule
- The Quotient Rule
=Leibniz Derivative of Polynomial Functions=
- The sum rule
- The Difference Rule
- The Product Rule
- The Quotient Rule
Examples
Example 1
Ex1:
Using the sum rule we can divided in to different part
so we will started to work on different part by using power rule.
Example 2
Ex2:
The Product Rule
Using the Product Rule we can divided in to different part
Example 3
Ex3:
The Quotient Rule