Difference between revisions of "Integral"
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
==Definite Integral== | ==Definite Integral== | ||
Some equations | Some equations you can remember | ||
But when you are looking at the equation you must need to know F(x)= f'(x). | |||
#<math>\int_{a}^{b} f(x) \,dx = F(b) - F(a)</math> | #<math>\int_{a}^{b} f(x) \,dx = F(b) - F(a)</math> | ||
#<math>\int_{a}^{b} {x^{n}}\,dx ={ b^{n+1} \over n+1 } - { a^{n+1} \over n+1 }</math> | #<math>\int_{a}^{b} {x^{n}}\,dx ={ b^{n+1} \over n+1 } - { a^{n+1} \over n+1 }</math> | ||
==Indefinite Integral== | ==Indefinite Integral== | ||
Some equations you can remember | |||
But same you must need to know F(x)= f'(x). | |||
#Indefinite Integral <math>\int f(x) \,dx = F(x)+c,</math> | #Indefinite Integral <math>\int f(x) \,dx = F(x)+c,</math> | ||
#Indefinite Integral <math>\int x^n \,dx = { b^{n+1} \over n+1 }+c,</math> | |||
==Examples== | ==Examples== | ||
====Examples for Definite Integral==== | ====Examples for Definite Integral==== |
Revision as of 14:17, 2 September 2021
Definite Integral
Some equations you can remember But when you are looking at the equation you must need to know F(x)= f'(x).
Indefinite Integral
Some equations you can remember But same you must need to know F(x)= f'(x).
- Indefinite Integral
- Indefinite Integral