Difference between revisions of "Integral"

From PKC
Jump to navigation Jump to search
Line 1: Line 1:
==Definite Integral==
==Definite Integral==
Some equations  
Some equations you can remember
You must need to know F(x)= f'(x).  
But when you are looking at the equation you must need to know F(x)= f'(x).  
#<math>\int_{a}^{b} f(x) \,dx = F(b) - F(a)</math>
#<math>\int_{a}^{b} f(x) \,dx = F(b) - F(a)</math>
#<math>\int_{a}^{b} {x^{n}}\,dx ={ b^{n+1} \over n+1 } - { a^{n+1} \over n+1 }</math>
#<math>\int_{a}^{b} {x^{n}}\,dx ={ b^{n+1} \over n+1 } - { a^{n+1} \over n+1 }</math>
==Indefinite Integral==
==Indefinite Integral==
Some equations you can remember
But same you must need to know F(x)= f'(x).
#Indefinite Integral <math>\int f(x) \,dx = F(x)+c,</math>
#Indefinite Integral <math>\int f(x) \,dx = F(x)+c,</math>
#Indefinite Integral <math>\int x^n \,dx = { b^{n+1} \over n+1 }+c,</math>
==Examples==
==Examples==
====Examples for Definite Integral====
====Examples for Definite Integral====

Revision as of 14:17, 2 September 2021

Definite Integral

Some equations you can remember But when you are looking at the equation you must need to know F(x)= f'(x).

Indefinite Integral

Some equations you can remember But same you must need to know F(x)= f'(x).

  1. Indefinite Integral
  2. Indefinite Integral

Examples

Examples for Definite Integral