Difference between revisions of "What is Log"
Jump to navigation
Jump to search
Line 2: | Line 2: | ||
#First law If <math>log_a x = n </math> than <math>a^n = x </math> | #First law If <math>log_a x = n </math> than <math>a^n = x </math> | ||
#Second law <math>log_A + log_B = log_(AB)</math> | #Second law <math>log_A + log_B = log_(AB)</math> | ||
#Thirde law <math>log_A - log_B = | #Thirde law <math>log_A - log_B = log_({A \over B})</math> | ||
#Fourth law If "<math>{log_ x}^{log_ x} = {log_ x}^2 = n </math>" than "<math>{log_ x} = \sqrt[2]{n} </math>" | #Fourth law If "<math>{log_ x}^{log_ x} = {log_ x}^2 = n </math>" than "<math>{log_ x} = \sqrt[2]{n} </math>" | ||
#Fieth law if <math>log_ (x^n) = {log_ x}^n = 2{log_ x}</math> | #Fieth law if <math>log_ (x^n) = {log_ x}^n = 2{log_ x}</math> |
Revision as of 15:03, 1 October 2021
- First law If than
- Second law
- Thirde law
- Fourth law If "" than ""
- Fieth law if
examples
example 1
ex1: find n.
n=1
example 2
ex2: find x.
x = 16
example 3
ex3: find x.
a = 5