Difference between revisions of "Yoneda Lemma"
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
Yoneda Lemma(米田引理) | {{WikiEntry|key=Yoneda Lemma|qCode=320577}}, in Chinese: (米田引理). It is a theorem that embeds a locally small category into a category of functors. | ||
==陳述== | ==陳述== | ||
設<math>\mathcal{C}</math>為一[[範疇 (數學)|範疇]],定義兩個[[函子範疇]]如下: | 設<math>\mathcal{C}</math>為一[[範疇 (數學)|範疇]],定義兩個[[函子範疇]]如下: | ||
: <math>\mathcal{C}^\wedge := \mathrm{Fct}(\mathcal{C}, \mathbf{Set})</math> | : <math>\mathcal{C}^\wedge := \mathrm{Fct}(\mathcal{C}, \mathbf{Set})</math> | ||
: <math>\mathcal{C}^\vee := \mathrm{Fct}(\mathcal{C}^{\mathrm{op}}, \mathbf{Set})</math> | : <math>\mathcal{C}^\vee := \mathrm{Fct}(\mathcal{C}^{\mathrm{op}}, \mathbf{Set})</math> |
Revision as of 16:52, 24 February 2022
Yoneda Lemma(Q320577), in Chinese: (米田引理). It is a theorem that embeds a locally small category into a category of functors.