Difference between revisions of "Yoneda Lemma"

From PKC
Jump to navigation Jump to search
Line 1: Line 1:
Yoneda Lemma(米田引理)
{{WikiEntry|key=Yoneda Lemma|qCode=320577}}, in Chinese: (米田引理). It is a theorem that embeds a locally small category into a category of functors.
==陳述==
==陳述==
設<math>\mathcal{C}</math>為一[[範疇 (數學)|範疇]],定義兩個[[函子範疇]]如下:
設<math>\mathcal{C}</math>為一[[範疇 (數學)|範疇]],定義兩個[[函子範疇]]如下:
: <math>\mathcal{C}^\wedge := \mathrm{Fct}(\mathcal{C}, \mathbf{Set})</math>
: <math>\mathcal{C}^\wedge := \mathrm{Fct}(\mathcal{C}, \mathbf{Set})</math>
: <math>\mathcal{C}^\vee := \mathrm{Fct}(\mathcal{C}^{\mathrm{op}}, \mathbf{Set})</math>
: <math>\mathcal{C}^\vee := \mathrm{Fct}(\mathcal{C}^{\mathrm{op}}, \mathbf{Set})</math>

Revision as of 16:52, 24 February 2022

Yoneda Lemma(Q320577), in Chinese: (米田引理). It is a theorem that embeds a locally small category into a category of functors.

陳述

為一範疇,定義兩個函子範疇如下: