Difference between revisions of "Math equation demo"

From PKC
Jump to navigation Jump to search
Line 3: Line 3:


  <math>P_{wave} = \frac{\rho g^2 h^2 T_e}{6400 \pi} </math>
  <math>P_{wave} = \frac{\rho g^2 h^2 T_e}{6400 \pi} </math>
<math>\frac{\vec{X}_0}{P(\vec{X}_0)} \nabla_{\{H,T,B,\eta \}} P (\vec{X}_0) = (2, 1, 1, 1) </math>


In more explicit terms, the equaliser consists of an object ''E'' and a morphism ''eq'' : ''E'' → ''X'' satisfying <math>f \circ eq = g \circ eq</math>,
In more explicit terms, the equaliser consists of an object ''E'' and a morphism ''eq'' : ''E'' → ''X'' satisfying <math>f \circ eq = g \circ eq</math>,

Revision as of 13:34, 29 June 2021

The following shows an angled degree symbol:




In more explicit terms, the equaliser consists of an object E and a morphism eq : EX satisfying , and such that, given any object O and morphism m : OX, if , then there exists a unique morphism u : OE such that .



A morphism is said to equalise and if .[1]

  1. Barr, Michael; Wells, Charles (1998). Category theory for computing science (PDF). p. 266. Archived from the original (PDF) on 2016-03-04. Retrieved 2013-07-20.  Unknown parameter |url-status= ignored (help)