Difference between revisions of "Calculus:Derivative of Trigonometric Functions"
Jump to navigation
Jump to search
(Created page with "#<math>f(sin x)'= cos(x)</math> #<math>f(cos x)'= -sin(x)</math> #<math>f(tan x)'= sec^2(x)</math> #<math>f(cot x)'= -csc^2(x)</math> #<math>f(csc x)'= -csc(x) cot(x)</math> #...") |
|||
Line 5: | Line 5: | ||
#<math>f(csc x)'= -csc(x) cot(x)</math> | #<math>f(csc x)'= -csc(x) cot(x)</math> | ||
#<math>f(sec x)'= sec(x) tan(x)</math> | #<math>f(sec x)'= sec(x) tan(x)</math> | ||
==How do we get the equation== | |||
<math>f(sin x)'= cos(x)</math> and <math>f(cos x)'= -sin(x)</math> you only can tell by looking at the graph so we will skip it to. | |||
So we will started with | |||
<math>f(tan x)'= sec^2(x)</math> | |||
We know that <math>tan x = {sin x \over cos x}</math> |
Revision as of 11:48, 31 August 2021
How do we get the equation
and you only can tell by looking at the graph so we will skip it to.
So we will started with
We know that