Difference between revisions of "Calculus:Derivative of Trigonometric Functions"
Jump to navigation
Jump to search
Line 20: | Line 20: | ||
<math>f({sin x \over cos x})'={{cos x (sin x)' - sin x (cos x)'} \over {cos x}^2 }</math> | <math>f({sin x \over cos x})'={{cos x (sin x)' - sin x (cos x)'} \over {cos x}^2 }</math> | ||
<math>f({sin x \over cos x})'={{cos x cos x - sin x (-sin x)} \over {cos x}^2 }</math> | |||
<math>f({sin x \over cos x})'={{{cos}^2 x + {sin}^2 x} \over {cos x}^2 }</math> | |||
<math>{cos}^2 x + {sin}^2 x} = 1</math> | |||
<math>f({sin x \over cos x})'={1 \over {cos x}^2 }</math> |
Revision as of 12:32, 31 August 2021
How do we get the equation
and you only can tell by looking at the graph so we will skip it to.
tan x
So we will started with
We know that If you have learn trigonometry then.
by using the Quotient Rule
Failed to parse (syntax error): {\displaystyle {cos}^2 x + {sin}^2 x} = 1}