Difference between revisions of "Integral"
Jump to navigation
Jump to search
Line 18: | Line 18: | ||
#Indefinite Integral <math>\int x^n \,dx = { b^{n+1} \over n+1 }+c</math> | #Indefinite Integral <math>\int x^n \,dx = { b^{n+1} \over n+1 }+c</math> | ||
#Natural log rule <math>\int {n \over x} \,dx = { ln |x^n|}</math> | #Natural log rule <math>\int {n \over x} \,dx = { ln |x^n|}</math> | ||
#<math>\int { | #<math>\int a^x dx = {a^x \over In a}</math> | ||
#constant(constant can be pull out in the Indefinite Integral) <math>\int c* f(x)dx = c \int f(x)dx</math> | #constant(constant can be pull out in the Indefinite Integral) <math>\int c* f(x)dx = c \int f(x)dx</math> | ||
==Examples== | ==Examples== | ||
====Examples for Definite Integral==== | ====Examples for Definite Integral==== |
Revision as of 13:06, 4 September 2021
Vocabulary of the equation
- F(x)= f'(x)
- c = constant
- n = constant
- = Integrals from a to b
Definite Integral
Some equations you can remember But when you are looking at the equation you must need to know F(x)= f'(x).
Indefinite Integral
Some equations you can remember But same you must need to know F(x)= f'(x).
- Indefinite Integral
- sum rule of Indefinite Integral
- The Difference Rule
- Indefinite Integral
- Natural log rule
- constant(constant can be pull out in the Indefinite Integral)