Difference between revisions of "Calculus:Derivative of Polynomial Functions"

From PKC
Jump to navigation Jump to search
Line 63: Line 63:
<math> z'(v) ={P(v^3 + 5v)(4v^4)' - {(4v^4)(v^3 + 5v)' \over (v^3 + 5v)^2 } </math>
<math> z'(v) ={P(v^3 + 5v)(4v^4)' - {(4v^4)(v^3 + 5v)' \over (v^3 + 5v)^2 } </math>


<math> z'(v) ={{(v^3 + 5v)(16v^3) - (4v^4)(v^3 + 5v)' \over (v^3 + 5v)^2 } </math>
<math> z'(v) ={(v^3 + 5v)(16v^3) - (4v^4)(v^3 + 5v)' \over (v^3 + 5v)^2 } </math>
</noinclude>
</noinclude>

Revision as of 13:40, 16 September 2021

Derivative of Polynomial Functions

=Newton Derivative of Polynomial Functions=
  1. The sum rule
  2. The Difference Rule
  3. The Product Rule
  4. The Quotient Rule
=Leibniz Derivative of Polynomial Functions=
  1. The sum rule
  2. The Difference Rule
  3. The Product Rule
  4. The Quotient Rule


Examples

Find the derivative

Example 1

Ex1:

Using the sum rule we can divided in to different part

so we will started to work on different part by using power rule.

Example 2

Ex2:

The Product Rule

Using the Product Rule we can divided in to different part

Example 3

Ex3:

Now we can understand v as x the idea will be the same.

By using the quotient rule

we can under stand it as

f(v)=4v^4 g(v)=v^3 + 5v

so we will get

Failed to parse (syntax error): {\displaystyle z'(v) ={P(v^3 + 5v)(4v^4)' - {(4v^4)(v^3 + 5v)' \over (v^3 + 5v)^2 } }