Difference between revisions of "Simplifying Derivatives"
Jump to navigation
Jump to search
Line 14: | Line 14: | ||
<math>a'(x) =(3x^2)({(2x-5)}^4) + (x^3)(8 {(2x-5)}^3)</math> | <math>a'(x) =(3x^2)({(2x-5)}^4) + (x^3)(8 {(2x-5)}^3)</math> | ||
factorize | factorize | ||
<math>a'(x) =x^2({(2x-5)}^3)(8 x) + 3(2x-5)) </math> | <math>a'(x) =x^2({(2x-5)}^3)(8 x) + 3(2x-5)) </math> | ||
<math>a'(x) =x^2({(2x-5)}^3)(8 x+6x-15)) </math> | <math>a'(x) =x^2({(2x-5)}^3)(8 x+6x-15)) </math> | ||
<math>a'(x) =x^2{(2x-5)}^3(14x-15)) </math> | <math>a'(x) =x^2{(2x-5)}^3(14x-15)) </math> | ||
====example 2==== | ====example 2==== | ||
<math>f'(x)= x^2 \sqrt[2]{4-9x}</math> simplify | <math>f'(x)= x^2 \sqrt[2]{4-9x}</math> simplify |
Revision as of 15:16, 8 October 2021
example 1
Product Rule
factorize
example 2
simplify
Chain rule