Difference between revisions of "Simplifying Derivatives"

From PKC
Jump to navigation Jump to search
Line 14: Line 14:


<math>a'(x) =(3x^2)({(2x-5)}^4)  + (x^3)(8 {(2x-5)}^3)</math>
<math>a'(x) =(3x^2)({(2x-5)}^4)  + (x^3)(8 {(2x-5)}^3)</math>
factorize  
factorize  
<math>a'(x) =x^2({(2x-5)}^3)(8 x) + 3(2x-5)) </math>
<math>a'(x) =x^2({(2x-5)}^3)(8 x) + 3(2x-5)) </math>


<math>a'(x) =x^2({(2x-5)}^3)(8 x+6x-15)) </math>
<math>a'(x) =x^2({(2x-5)}^3)(8 x+6x-15)) </math>
<math>a'(x) =x^2{(2x-5)}^3(14x-15)) </math>
<math>a'(x) =x^2{(2x-5)}^3(14x-15)) </math>
====example 2====
====example 2====
<math>f'(x)= x^2 \sqrt[2]{4-9x}</math> simplify  
<math>f'(x)= x^2 \sqrt[2]{4-9x}</math> simplify  

Revision as of 15:16, 8 October 2021

example 1

Product Rule


factorize

example 2

simplify

Chain rule