Difference between revisions of "Simplifying Derivatives"
Jump to navigation
Jump to search
Line 33: | Line 33: | ||
====example 3==== | ====example 3==== | ||
<math>f(x)= x^2 \sqrt[2]{1-x^2}</math> simplify | |||
<math>f(x)= x^2 {(1-x^2)}^{1 \over 2}</math> | |||
Product Rule <math>(f*g)'=f*g'+ g*f'</math> | |||
<math>f'(x)= x^2 ( 1 \over 2 {(1-x^2)}^{-1 \over 2} (-2x) ) + 2x {(1-x^2)}^{1 \over 2}</math> | |||
<math>f'(x)= -x^3 {(1-x^2)}^{-1 \over 2} + 2x {(1-x^2)}^{1 \over 2}</math> | |||
factorize | |||
<math>f'(x)= x {(1-x^2)}^{-1 \over 2} [-x^2 + 2 {(1-x^2)}]</math> | |||
<math>f'(x)= {x \over {(1-x^2)}^{1 \over 2}} [-x^2 + 2 -2x^2}]</math> | |||
<math>f'(x)= {x \over {(1-x^2)}^{1 \over 2}} [ 2 - 3x^2}]</math> | |||
<math>f'(x)= {x [ 2 - 3x^2}] \over {(1-x^2)}^{1 \over 2}} </math> | |||
<math>f'(x)= {[ 2x - 3x^3}] \over {(1-x^2)}^{1 \over 2}} </math> |
Revision as of 13:45, 9 October 2021
example 1
Product Rule
factorize
example 2
simplify
Chain rule
example 3
simplify
Product Rule
factorize
Failed to parse (syntax error): {\displaystyle f'(x)= {x \over {(1-x^2)}^{1 \over 2}} [-x^2 + 2 -2x^2}]}
Failed to parse (syntax error): {\displaystyle f'(x)= {x \over {(1-x^2)}^{1 \over 2}} [ 2 - 3x^2}]}
Failed to parse (syntax error): {\displaystyle f'(x)= {x [ 2 - 3x^2}] \over {(1-x^2)}^{1 \over 2}} }
Failed to parse (syntax error): {\displaystyle f'(x)= {[ 2x - 3x^3}] \over {(1-x^2)}^{1 \over 2}} }