Difference between revisions of "Simplifying Derivatives"

From PKC
Jump to navigation Jump to search
Line 33: Line 33:


====example 3====
====example 3====
<math>f(x)= x^2 \sqrt[2]{1-x^2}</math>  simplify
<math>f(x)= x^2 {(1-x^2)}^{1 \over 2}</math>
Product Rule <math>(f*g)'=f*g'+ g*f'</math>
<math>f'(x)= x^2 ( 1 \over 2 {(1-x^2)}^{-1 \over 2} (-2x) ) + 2x {(1-x^2)}^{1 \over 2}</math>
<math>f'(x)= -x^3 {(1-x^2)}^{-1 \over 2} + 2x {(1-x^2)}^{1 \over 2}</math>
factorize
<math>f'(x)= x {(1-x^2)}^{-1 \over 2} [-x^2 + 2 {(1-x^2)}]</math>
<math>f'(x)= {x \over {(1-x^2)}^{1 \over 2}} [-x^2 + 2 -2x^2}]</math>
<math>f'(x)= {x \over {(1-x^2)}^{1 \over 2}} [ 2 - 3x^2}]</math>
<math>f'(x)= {x [ 2 - 3x^2}] \over {(1-x^2)}^{1 \over 2}} </math>
<math>f'(x)= {[ 2x - 3x^3}] \over {(1-x^2)}^{1 \over 2}} </math>

Revision as of 13:45, 9 October 2021

example 1

Product Rule


factorize

example 2

simplify

Chain rule

example 3

simplify

Product Rule

factorize

Failed to parse (syntax error): {\displaystyle f'(x)= {x \over {(1-x^2)}^{1 \over 2}} [-x^2 + 2 -2x^2}]}


Failed to parse (syntax error): {\displaystyle f'(x)= {x \over {(1-x^2)}^{1 \over 2}} [ 2 - 3x^2}]}


Failed to parse (syntax error): {\displaystyle f'(x)= {x [ 2 - 3x^2}] \over {(1-x^2)}^{1 \over 2}} }

Failed to parse (syntax error): {\displaystyle f'(x)= {[ 2x - 3x^3}] \over {(1-x^2)}^{1 \over 2}} }