Difference between revisions of "Simplifying Derivatives"
Jump to navigation
Jump to search
Line 47: | Line 47: | ||
<math>f'(x)= x {(1-x^2)}^{-1 \over 2} [-x^2 + 2 {(1-x^2)}]</math> | <math>f'(x)= x {(1-x^2)}^{-1 \over 2} [-x^2 + 2 {(1-x^2)}]</math> | ||
<math>f'(x)= {x \over {(1-x^2)}^{1 \over 2}} [-x^2 + 2 -2x^2}]</math> | <math>f'(x)= {x \over {(1-x^2)}^{1 \over 2}} [{-x^2 + 2 -2x^2}]</math> | ||
<math>f'(x)= {x \over {(1-x^2)}^{1 \over 2}} [ 2 - 3x^2} | <math>f'(x)= {x \over {(1-x^2)}^{1 \over 2}} {[ 2 - 3x^2]}</math> | ||
<math>f'(x)= {x [ 2 - 3x^2 | <math>f'(x)= {x [ 2 - 3x^2] \over {(1-x^2)}^{1 \over 2}} </math> | ||
<math>f'(x)= {[ 2x - 3x^3 | <math>f'(x)= {[ 2x - 3x^3] \over {(1-x^2)}^{1 \over 2}} </math> |
Revision as of 13:46, 9 October 2021
example 1
Product Rule
factorize
example 2
simplify
Chain rule
example 3
simplify
Product Rule
factorize