Difference between revisions of "Simplifying Derivatives"

From PKC
Jump to navigation Jump to search
Line 47: Line 47:
<math>f'(x)= x {(1-x^2)}^{-1 \over 2} [-x^2 + 2 {(1-x^2)}]</math>
<math>f'(x)= x {(1-x^2)}^{-1 \over 2} [-x^2 + 2 {(1-x^2)}]</math>


<math>f'(x)= {x \over {(1-x^2)}^{1 \over 2}} [-x^2 + 2 -2x^2}]</math>
<math>f'(x)= {x \over {(1-x^2)}^{1 \over 2}} [{-x^2 + 2 -2x^2}]</math>




<math>f'(x)= {x \over {(1-x^2)}^{1 \over 2}} [ 2 - 3x^2}]</math>
<math>f'(x)= {x \over {(1-x^2)}^{1 \over 2}} {[ 2 - 3x^2]}</math>




<math>f'(x)= {x [ 2 - 3x^2}] \over {(1-x^2)}^{1 \over 2}} </math>
<math>f'(x)= {x [ 2 - 3x^2] \over {(1-x^2)}^{1 \over 2}} </math>


<math>f'(x)= {[ 2x - 3x^3}] \over {(1-x^2)}^{1 \over 2}} </math>
<math>f'(x)= {[ 2x - 3x^3] \over {(1-x^2)}^{1 \over 2}} </math>

Revision as of 13:46, 9 October 2021

example 1

Product Rule


factorize

example 2

simplify

Chain rule

example 3

simplify

Product Rule

factorize