Difference between revisions of "Simplifying Derivatives"

From PKC
Jump to navigation Jump to search
Line 61: Line 61:
<math>f(x)= {(x+3)^4 \over (x^2 + 5)^{1 \over 2} }</math>
<math>f(x)= {(x+3)^4 \over (x^2 + 5)^{1 \over 2} }</math>


The Quotient Rule <math>({f \over g})' = {(gf'-fg') \over g^2}
The Quotient Rule <math>({f \over g})' = {(gf'-fg') \over g^2}</math>


<math>f = (x+3)^4 </math>
<math>f = {(x+3)}^4 </math>


<math>f' = 4(x+3)^3 </math>
<math>f' = 4(x+3)^3 </math>
Line 71: Line 71:
<math>g' = {1 \over 2} (x^2 + 5)^{-1 \over 2} (2x) </math>
<math>g' = {1 \over 2} (x^2 + 5)^{-1 \over 2} (2x) </math>


<math>(x^2 + 5)^{1 \over 2} 4(x+3)^3 </math>
<math>{{(x^2 + 5)^{1 \over 2} 4(x+3)^3 + {(x+3)}^4 {1 \over 2} (x^2 + 5)^{-1 \over 2} (2x) } \over (x^2 + 5) }</math>

Revision as of 12:02, 10 October 2021

example 1

Product Rule


factorize

example 2

simplify

Chain rule

example 3

simplify

Product Rule

factorize



example 4

The Quotient Rule