Difference between revisions of "Math equation demo"
Jump to navigation
Jump to search
Line 9: | Line 9: | ||
The following equation shows how to use square root: | |||
<math>\Large c = \sqrt(a^2 + b^2)</math> | |||
A morphism <math>m:O \rightarrow X</math> is said to '''equalise''' <math>f</math> and <math>g</math> if <math>f \circ m = g \circ m</math>.<ref>{{cite book |last1=Barr |first1=Michael |author-link1=Michael Barr (mathematician) |last2=Wells |first2=Charles |author-link2=Charles Wells (mathematician) |year=1998 |title=Category theory for computing science |page=266 |url=http://www.math.mcgill.ca/triples/Barr-Wells-ctcs.pdf |access-date=2013-07-20 |format=PDF |archive-url=https://web.archive.org/web/20160304031956/http://www.math.mcgill.ca/triples/Barr-Wells-ctcs.pdf |archive-date=2016-03-04 |url-status=dead }}</ref> | A morphism <math>m:O \rightarrow X</math> is said to '''equalise''' <math>f</math> and <math>g</math> if <math>f \circ m = g \circ m</math>.<ref>{{cite book |last1=Barr |first1=Michael |author-link1=Michael Barr (mathematician) |last2=Wells |first2=Charles |author-link2=Charles Wells (mathematician) |year=1998 |title=Category theory for computing science |page=266 |url=http://www.math.mcgill.ca/triples/Barr-Wells-ctcs.pdf |access-date=2013-07-20 |format=PDF |archive-url=https://web.archive.org/web/20160304031956/http://www.math.mcgill.ca/triples/Barr-Wells-ctcs.pdf |archive-date=2016-03-04 |url-status=dead }}</ref> |
Revision as of 12:56, 28 December 2021
The following shows an angled degree symbol:
In more explicit terms, the equaliser consists of an object E and a morphism eq : E → X satisfying , and such that, given any object O and morphism m : O → X, if , then there exists a unique morphism u : O → E such that .
The following equation shows how to use square root:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Large c = \sqrt(a^2 + b^2)}
A morphism is said to equalise and if .[1]
- ↑ Barr, Michael; Wells, Charles (1998). Category theory for computing science (PDF). p. 266. Archived from the original (PDF) on 2016-03-04. Retrieved 2013-07-20. Unknown parameter
|url-status=
ignored (help)