Difference between revisions of "Book/Picturing Quantum Processes"
Line 19: | Line 19: | ||
This book is about using pictorial representation to describe quantum processes. This statement meant that this diagrammatic language could be a generic symbolic system to represent any physical process, since quantum process is really just a way approximate physical phenomenon in a discrete symbol system. | This book is about using pictorial representation to describe quantum processes. This statement meant that this diagrammatic language could be a generic symbolic system to represent any physical process, since quantum process is really just a way approximate physical phenomenon in a discrete symbol system. | ||
==Quantum Maps from Doubling== | ==Quantum Maps from Doubling== | ||
From chapter 6.1 of this book<ref name="PQP">{{:Book/Picturing Quantum Processes}}</ref>, the notion of '''doubling''' is applied to generate probabilities<ref extends="PQP"> Chap 6.1.1, p.253</ref>, and eliminate global phases<ref extends="PQP"> Chap 6.1.2, p.257</ref>. The notion of '''doubling''' maybe related to the notion of [[Double Entry Bookkeeping]]. | From chapter 6.1 of this book<ref name="PQP">{{:Book/Picturing Quantum Processes}}</ref>, the notion of '''doubling''' is applied to generate probabilities<ref extends="PQP"> Chap 6.1.1, p.253</ref>, and eliminate global phases<ref extends="PQP"> Chap 6.1.2, p.257</ref>. The notion of '''doubling''' maybe related to the notion of [[Double Entry Bookkeeping]]<ref>{{:Book/Summa de Arithmetica, Geometria, Proportioni et Proportionalita}}</ref>. | ||
=References= | =References= |
Revision as of 02:20, 8 March 2022
Coecke, Bob; Kissinger, Aleks (2017). Picturing Quantum Processes. local page: Cambridge University Press. ISBN 978-1316219317.
This book is closely related to Diagrammatic Reasoning[1]. Coecke also wrote a paper on how to teach quantum pictural process to kindergarten kids[2].
Interesting Ideas in this book
This book is about using pictorial representation to describe quantum processes. This statement meant that this diagrammatic language could be a generic symbolic system to represent any physical process, since quantum process is really just a way approximate physical phenomenon in a discrete symbol system.
Quantum Maps from Doubling
From chapter 6.1 of this book[3], the notion of doubling is applied to generate probabilitiesCite error: Invalid <ref>
tag; invalid names, e.g. too many, and eliminate global phasesCite error: Invalid <ref>
tag; invalid names, e.g. too many. The notion of doubling maybe related to the notion of Double Entry Bookkeeping[4].
References
- ↑ Glasgow; Narayanan; Chandrasekaran, eds. (1995). Diagrammatic Reasoning:Cognitive and Computational Perspectives. local page: MIT Press. ISBN 9780262571128.
- ↑ Coecke, Bob (Oct 4, 2005). Kindergarten Quantum Mechanics (PDF). local page: arXiv.
- ↑ Coecke, Bob; Kissinger, Aleks (2017). Picturing Quantum Processes. local page: Cambridge University Press. ISBN 978-1316219317.
- ↑ Pacioli, Luca (1494). Summa de Arithmetica, Geometria, Proportioni et Proportionalita: Distintio Nona, Tractus XI, Particularis de Computis et Scripturis [Pacioli on Accounting]. Translated by R.G., Brown; K.S, Johnston. local page: McGraw-Hill.
Related Pages