Ex1 d x d y = x 2 y 2 {\displaystyle {dx \over dy}={x^{2} \over y^{2}}}
y 2 ∗ d y = x 2 ∗ d x {\displaystyle y^{2}*dy=x^{2}*dx}
∫ y 2 ∗ d y = ∫ x 2 ∗ d x {\displaystyle {\int y^{2}*dy}={\int x^{2}*dx}}
∫ y 2 ∗ d y = y 3 3 {\displaystyle {\int y^{2}*dy}={y^{3} \over 3}}
∫ x 2 ∗ d x = x 3 3 {\displaystyle {\int x^{2}*dx}={x^{3} \over 3}}
But one side of the equation needs to add a constant c.
y 3 3 = x 3 3 + c {\displaystyle {y^{3} \over 3}={x^{3} \over 3}+c}
y 3 = x 3 + 3 c {\displaystyle y^{3}=x^{3}+3c}
constant times 3 will still be constant so 3c-> c.
y 3 3 . = x 3 + c 3 {\displaystyle {\sqrt[{3}]{y^{3}}}.={\sqrt[{3}]{x^{3}+c}}}