f ′ ( x ) = x 2 4 − 9 x 2 {\displaystyle f'(x)=x^{2}{\sqrt[{2}]{4-9x}}}
f ′ ( x ) = x 2 4 − 9 x 2 {\displaystyle f'(x)=x^{2}{\sqrt[{2}]{4-9x}}} simplify
Chain rule [ f ( g ( x ) ) ] ′ = f ′ ( g ( x ) ) ∗ g ′ ( x ) {\displaystyle [f(g(x))]'=f'(g(x))*g'(x)}
2 x 4 − 9 x 2 + − 9 2 ( 4 − 9 x ) − 1 2 {\displaystyle 2x{\sqrt[{2}]{4-9x}}+{-9 \over 2}{(4-9x)}^{-1 \over 2}}
x ( 8 − 45 x 2 ) 4 − 9 x 2 4 − 9 x 2 {\displaystyle {x(8-{45x \over 2}){\sqrt[{2}]{4-9x}} \over {\sqrt[{2}]{4-9x}}}}