Inverse
Jump to navigation
Jump to search
The notion of inverse in mathematical operation is simply the anti-operator.
Excerpt from Wikipedia
The following paragraph is copied from Wikipedia.
Compositional inverseInverses and composition
If is an invertible function with domain and codomain , then
- , for every ; and , for every .
Using the composition of functions, we can rewrite this statement as follows:
- and
where is the identity function on the set ; that is, the function that leaves its argument unchanged. In Category Theory, this statement is used as the definition of an inverse morphism.