( x n ) ′ = n ∗ x n − 1 {\displaystyle (x^{n})'=n*x^{n-1}}
n can be any number that is a kind of constant 1 2 {\displaystyle 1 \over 2} is constant.
also when you have square root
x {\displaystyle {\sqrt {x}}}
EX1: f ′ ( x 6 ) {\displaystyle f'(x^{6})}
Using the Power rule f ′ ( x n ) = n ∗ x n − 1 {\displaystyle f'(x^{n})=n*x^{n-1}}
f ′ ( x 6 ) = 6 ∗ x 6 − 1 {\displaystyle f'(x^{6})=6*x^{6-1}}
f ′ ( x 6 ) = 6 x 5 {\displaystyle f'(x^{6})=6x^{5}}
EX2: f ′ ( x 7 ) {\displaystyle f'(x^{7})}
f ′ ( x 7 ) = 7 ∗ x 7 − 1 {\displaystyle f'(x^{7})=7*x^{7-1}}
f ′ ( x 7 ) = 7 x 6 {\displaystyle f'(x^{7})=7x^{6}}
EX3: f ′ ( x 7 ) {\displaystyle f'(x^{7})}
EX4: f ′ ( x 7 7 ) {\displaystyle f'({x^{7} \over 7})}
f ′ ( x 7 7 ) = 1 7 7 ∗ x 7 − 1 {\displaystyle f'({x^{7} \over 7})={1 \over 7}7*x^{7-1}}
f ′ ( x 7 7 ) = x 6 {\displaystyle f'({x^{7} \over 7})=x^{6}}