Need to work on
ex6: l o g 4 x + l o g 4 ( x + 4 ) − l o g 4 ( x 4 + 8 x 3 + 16 x 2 ) = 2 {\displaystyle log_{4}x+log_{4}(x+4)-log_{4}(x^{4}+8x^{3}+16x^{2})=2} simplify
l o g 4 x + l o g 4 ( x + 4 ) − l o g 4 ( x 4 + 8 x 3 + 16 x 2 ) = 2 {\displaystyle log_{4}x+log_{4}(x+4)-log_{4}(x^{4}+8x^{3}+16x^{2})=2}
l o g 4 x + l o g 4 ( x + 4 ) = 2 + l o g 4 ( x 4 + 8 x 3 + 16 x 2 ) {\displaystyle log_{4}x+log_{4}(x+4)=2+log_{4}(x^{4}+8x^{3}+16x^{2})}
l o g 4 x + l o g 4 ( x + 4 ) = l o g 4 ( x 2 + 4 x ) {\displaystyle log_{4}x+log_{4}(x+4)=log_{4}(x^{2}+4x)}
l o g 4 ( x 2 + 4 x ) − l o g 4 ( x 4 + 8 x 3 + 16 x 2 ) = 2 {\displaystyle log_{4}(x^{2}+4x)-log_{4}(x^{4}+8x^{3}+16x^{2})=2}
l o g 4 ( x 2 + 4 x ) − l o g 4 ( x 4 + 8 x 3 + 16 x 2 ) = l o g 4 ( x 2 + 4 x x 4 + 8 x 3 + 16 x 2 ) = 2 {\displaystyle log_{4}(x^{2}+4x)-log_{4}(x^{4}+8x^{3}+16x^{2})=log_{4}({x^{2}+4x \over x^{4}+8x^{3}+16x^{2}})=2}
l o g 4 ( 1 x 2 + 4 x ) = 2 {\displaystyle log_{4}({1 \over x^{2}+4x})=2}