L'Hospital's Rule 1 lim x → 0 f ( x ) g ( x ) = l i m x → 0 f ′ ( x ) g ′ ( x ) {\textstyle \lim _{x\to 0}{f(x) \over g(x)}=lim_{x\to 0}{f'(x) \over g'(x)}} L'Hospital's Rule 2 lim x → ∞ f ( x ) g ( x ) = l i m x → ∞ f ′ ( x ) g ′ ( x ) {\textstyle \lim _{x\to \infty }{f(x) \over g(x)}=lim_{x\to \infty }{f'(x) \over g'(x)}}
there