Calculus:Derivative of Polynomial Functions

From PKC
Revision as of 13:41, 16 September 2021 by Githubhenrykoo (talk | contribs) (→‎Example 3)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Derivative of Polynomial Functions

=Newton Derivative of Polynomial Functions=
  1. The sum rule
  2. The Difference Rule
  3. The Product Rule
  4. The Quotient Rule
=Leibniz Derivative of Polynomial Functions=
  1. The sum rule
  2. The Difference Rule
  3. The Product Rule
  4. The Quotient Rule


Examples

Find the derivative

Example 1

Ex1:

Using the sum rule we can divided in to different part

so we will started to work on different part by using power rule.

Example 2

Ex2:

The Product Rule

Using the Product Rule we can divided in to different part

Example 3

Ex3:

Now we can understand v as x the idea will be the same.

By using the quotient rule

we can under stand it as

f(v)=4v^4 g(v)=v^3 + 5v

so we will get